A genetic-based framework for solving (multi-criteria) weighted matching problems
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
- Michael Ball & Lawrence Bodin & Robert Dial, 1983. "A Matching Based Heuristic for Scheduling Mass Transit Crews and Vehicles," Transportation Science, INFORMS, vol. 17(1), pages 4-31, February.
- Donald L. Miller & Joseph F. Pekny, 1995. "A Staged Primal-Dual Algorithm for Perfect b-Matching with Edge Capacities," INFORMS Journal on Computing, INFORMS, vol. 7(3), pages 298-320, August.
- Zhou, Gengui & Gen, Mitsuo, 1999. "Genetic algorithm approach on multi-criteria minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 141-152, April.
- Bell, Colin E., 1994. "Weighted matching with vertex weights: An application to scheduling training sessions in NASA space shuttle cockpit simulators," European Journal of Operational Research, Elsevier, vol. 73(3), pages 443-449, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Torbjörn Larsson & Nils-Hassan Quttineh & Ida Åkerholm, 2024. "A Lagrangian bounding and heuristic principle for bi-objective discrete optimization," Operational Research, Springer, vol. 24(2), pages 1-34, June.
- Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
- Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- William Cook & André Rohe, 1999. "Computing Minimum-Weight Perfect Matchings," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 138-148, May.
- Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
- Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
- Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
- Lacour, Renaud, 2014. "Approches de résolution exacte et approchée en optimisation combinatoire multi-objectif, application au problème de l'arbre couvrant de poids minimal," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14806 edited by Vanderpooten, Daniel.
- Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
- Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
- Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
- Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
- Zhou, Gengui & Min, Hokey & Gen, Mitsuo, 2003. "A genetic algorithm approach to the bi-criteria allocation of customers to warehouses," International Journal of Production Economics, Elsevier, vol. 86(1), pages 35-45, October.
- Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).
- Cantarella, G.E. & Pavone, G. & Vitetta, A., 2006. "Heuristics for urban road network design: Lane layout and signal settings," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1682-1695, December.
- Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
- Beasley, J. E. & Cao, B., 1996. "A tree search algorithm for the crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 94(3), pages 517-526, November.
- Perumal, S.S.G. & Dollevoet, T.A.B. & Huisman, D. & Lusby, R.M. & Larsen, J. & Riis, M., 2020. "Solution Approaches for Vehicle and Crew Scheduling with Electric Buses," Econometric Institute Research Papers EI-2020-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Alizadeh, Somayeh & Ghazanfari, Mehdi, 2009. "Learning FCM by chaotic simulated annealing," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1182-1190.
- B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
- Suxia Ma & Yuelin Gao & Bo Zhang & Wenlu Zuo, 2022. "A New Nonparametric Filled Function Method for Integer Programming Problems with Constraints," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
- Karthekeyan Chandrasekaran & László A. Végh & Santosh S. Vempala, 2016. "The Cutting Plane Method is Polynomial for Perfect Matchings," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 23-48, February.
- Csondes, Tibor & Kotnyek, Balazs & Zoltan Szabo, Janos, 2002. "Application of heuristic methods for conformance test selection," European Journal of Operational Research, Elsevier, vol. 142(1), pages 203-218, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:149:y:2003:i:1:p:77-101. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.