IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v21y2015i12p971-991.html
   My bibliography  Save this article

Non-homogeneous volatility correlations in the bivariate multifractal model

Author

Listed:
  • Ruipeng Liu
  • Thomas Lux

Abstract

In this paper, we consider an extension of the recently proposed bivariate Markov-switching multifractal model of Calvet, Fisher, and Thompson [2006. "Volatility Comovement: A Multifrequency Approach." Journal of Econometrics 131: 179-215]. In particular, we allow correlations between volatility components to be non-homogeneous with two different parameters governing the volatility correlations at high and low frequencies. Specification tests confirm the added explanatory value of this specification. In order to explore its practical performance, we apply the model for computing value-at-risk statistics for different classes of financial assets and compare the results with the baseline, homogeneous bivariate multifractal model and the bivariate DCC-GARCH of Engle [2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models." Journal of Business & Economic Statistics 20 (3): 339-350]. As it turns out, the multifractal model with heterogeneous volatility correlations provides more reliable results than both the homogeneous benchmark and the DCC-GARCH model.

Suggested Citation

  • Ruipeng Liu & Thomas Lux, 2015. "Non-homogeneous volatility correlations in the bivariate multifractal model," The European Journal of Finance, Taylor & Francis Journals, vol. 21(12), pages 971-991, September.
  • Handle: RePEc:taf:eurjfi:v:21:y:2015:i:12:p:971-991
    DOI: 10.1080/1351847X.2014.897960
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2014.897960
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2014.897960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lux, Thomas, 2022. "Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 69-95.
    2. Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:21:y:2015:i:12:p:971-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.