IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v15y2020icp117-135.html
   My bibliography  Save this article

A hierarchical bayesian model for differential connectivity in multi-trial brain signals

Author

Listed:
  • Hu, Lechuan
  • Guindani, Michele
  • Fortin, Norbert J.
  • Ombao, Hernando

Abstract

There is a strong interest in the neuroscience community to measure brain connectivity and develop methods that can differentiate connectivity across patient groups and across different experimental stimuli. The development of such statistical tools is critical to understand the dynamics of functional relationships among brain structures supporting memory encoding and retrieval. However, challenges arise by providing from the need to incorporate within-condition similarity with between-conditions heterogeneity in modeling connectivity, as well as how to provide a natural way to conduct trial- and condition-level inference on effective connectivity. A Bayesian hierarchical vector autoregressive (BH-VAR) model is proposed to characterize brain connectivity and infer differences in connectivity across conditions. Within-condition connectivity similarity and between-conditions connectivity heterogeneity are accounted for by the priors on trial-specific models. In addition to the fully Bayesian framework, an alternative two-stage computational approach is also proposed which still allows straightforward uncertainty quantification of between-trial conditions via MCMC posterior sampling, but provides a fast approximate procedure for the estimation of trial-specific VAR parameters. A novel aspect of the approach is the use of a frequency-specific measure, partial directed coherence (PDC), to characterize effective connectivity under the Bayesian framework. More specifically, PDC allows inferring directionality and explaining the extent to which the present oscillatory activity at a certain frequency in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the brain network. The proposed model is applied to a large electrophysiological dataset collected as rats performed a complex sequence memory task. This unique dataset includes local field potentials (LFPs) activity recorded from an array of electrodes across the hippocampal region CA1 while animals were presented with multiple trials from two main conditions. The proposed modeling approach provided novel insights into hippocampal connectivity during memory performance. Specifically, it separated CA1 into two functional units, a lateral and a medial segment, each showing stronger functional connectivity to itself than to the other. This approach also revealed that information primarily flowed in a lateral-to-medial direction across trials (within-condition), and suggested this effect was stronger on one trial condition than the other (between-conditions effect). Collectively, these results indicate that the proposed model is a promising approach to quantify the variation of functional connectivity, both within- and between-conditions, and thus should have broad applications in neuroscience research.

Suggested Citation

  • Hu, Lechuan & Guindani, Michele & Fortin, Norbert J. & Ombao, Hernando, 2020. "A hierarchical bayesian model for differential connectivity in multi-trial brain signals," Econometrics and Statistics, Elsevier, vol. 15(C), pages 117-135.
  • Handle: RePEc:eee:ecosta:v:15:y:2020:i:c:p:117-135
    DOI: 10.1016/j.ecosta.2020.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306220300423
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2020.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorrostieta, Cristina & Ombao, Hernando & von Sachs, Rainer, 2019. "Time-Dependent Dual-Frequency Coherence in Multivariate Non-Stationary Time Series," LIDAM Reprints ISBA 2019011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Lechuan Hu & Norbert J. Fortin & Hernando Ombao, 2019. "Modeling High-Dimensional Multichannel Brain Signals," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 91-126, April.
    3. Cristina Gorrostieta & Hernando Ombao & Rainer Von Sachs, 2019. "Time‐Dependent Dual‐Frequency Coherence in Multivariate Non‐Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(1), pages 3-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
    2. Granados-Garcia, Guilllermo & Fiecas, Mark & Babak, Shahbaba & Fortin, Norbert J. & Ombao, Hernando, 2022. "Brain waves analysis via a non-parametric Bayesian mixture of autoregressive kernels," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Degras, David & Ting, Chee-Ming & Ombao, Hernando, 2022. "Markov-switching state-space models with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Dallakyan, Aramayis & Kim, Rakheon & Pourahmadi, Mohsen, 2022. "Time series graphical lasso and sparse VAR estimation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontaine, Charles & Frostig, Ron D. & Ombao, Hernando, 2020. "Modeling non-linear spectral domain dependence using copulas with applications to rat local field potentials," Econometrics and Statistics, Elsevier, vol. 15(C), pages 85-103.
    2. Shobande Olatunji Abdul & Shodipe Oladimeji Tomiwa, 2020. "Re-Evaluation of World Population Figures: Politics and Forecasting Mechanics," Economics and Business, Sciendo, vol. 34(1), pages 104-125, February.
    3. Wadud, Sania & Gronwald, Marc & Durand, Robert B. & Lee, Seungho, 2023. "Co-movement between commodity and equity markets revisited—An application of the Thick Pen method," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    6. Dallakyan, Aramayis & Kim, Rakheon & Pourahmadi, Mohsen, 2022. "Time series graphical lasso and sparse VAR estimation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:15:y:2020:i:c:p:117-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.