Closed-form results for vector moving average models with a univariate estimation approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecosta.2018.06.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John Galbraith & Aman Ullah & Victoria Zinde-Walsh, 2002. "Estimation Of The Vector Moving Average Model By Vector Autoregression," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 205-219.
- Christian Kascha, 2012.
"A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
- Christian Kascha, 2007. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Economics Working Papers ECO2007/12, European University Institute.
- Harvey,Andrew C., 1991.
"Forecasting, Structural Time Series Models and the Kalman Filter,"
Cambridge Books,
Cambridge University Press, number 9780521405737, January.
- Harvey,Andrew C., 1990. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521321969, January.
- Ravenna, Federico, 2007.
"Vector autoregressions and reduced form representations of DSGE models,"
Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
- Federico Ravenna, 2005. "Vector Autoregressions and Reduced Form Representations of DSGE Models," 2005 Meeting Papers 841, Society for Economic Dynamics.
- Federico Ravenna, 2006. "Vector autoregressions and reduced form representations of DSGE models," Working Papers 0619, Banco de España.
- Kotchoni, Rachidi, 2014.
"The indirect continuous-GMM estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 464-488.
- Rachidi Kotchoni, 2013. "The Indirect Continuous-GMM Estimation," Working Papers hal-00867804, HAL.
- Shiqing Ling & Michael McAleer, 2010.
"A general asymptotic theory for time‐series models,"
Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
- Shiqing Ling & Michael McAleer, 2009. "A General Asymptotic Theory for Time Series Models," CIRJE F-Series CIRJE-F-670, CIRJE, Faculty of Economics, University of Tokyo.
- Sbrana, Giacomo & Silvestrini, Andrea & Venditti, Fabrizio, 2017.
"Short-term inflation forecasting: The M.E.T.A. approach,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1065-1081.
- Giacomo Sbrana & Andrea Silvestrini & Fabrizio Venditti, 2015. "Short term inflation forecasting: the M.E.T.A. approach," Temi di discussione (Economic working papers) 1016, Bank of Italy, Economic Research and International Relations Area.
- Gourieroux, C & Monfort, A & Renault, E, 1993.
"Indirect Inference,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
- Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178, Decembrie.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, Decembrie.
- Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
- Sergio Koreisha & Tarmo Pukkila, 1990. "A Generalized Least‐Squares Approach For Estimation Of Autoregressive Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 139-151, March.
- Kapetanios, George, 2003.
"A note on an iterative least-squares estimation method for ARMA and VARMA models,"
Economics Letters, Elsevier, vol. 79(3), pages 305-312, June.
- George Kapetanios, 2002. "A Note on an Iterative Least Squares Estimation Method for ARMA and VARMA Models," Working Papers 467, Queen Mary University of London, School of Economics and Finance.
- Poloni, Federico & Sbrana, Giacomo, 2017. "Multivariate Trend–Cycle Extraction With The Hodrick–Prescott Filter," Macroeconomic Dynamics, Cambridge University Press, vol. 21(6), pages 1336-1360, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
- Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
- Sbrana, Giacomo & Silvestrini, Andrea & Venditti, Fabrizio, 2017.
"Short-term inflation forecasting: The M.E.T.A. approach,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1065-1081.
- Giacomo Sbrana & Andrea Silvestrini & Fabrizio Venditti, 2015. "Short term inflation forecasting: the M.E.T.A. approach," Temi di discussione (Economic working papers) 1016, Bank of Italy, Economic Research and International Relations Area.
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- Tobias Hartl & Roland Jucknewitz, 2022.
"Approximate state space modelling of unobserved fractional components,"
Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
- Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
- Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
- Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
- Philipp Heimberger & Jakob Kapeller, 2017.
"The performativity of potential output: pro-cyclicality and path dependency in coordinating European fiscal policies,"
Review of International Political Economy, Taylor & Francis Journals, vol. 24(5), pages 904-928, September.
- Philipp Heimberger & Jakob Kapeller, 2016. "The performativity of potential output: Pro-cyclicality and path dependency in coordinating European fiscal policies," Working Papers Series 50, Institute for New Economic Thinking.
- Jakob Kapeller & Philipp Heimberger, 2016. "The performativity of potential output: Pro-cyclicality and path dependency in coordinating European fiscal policies," ICAE Working Papers 50, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
- Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
- Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Hang Qian, 2014. "A Flexible State Space Model And Its Applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(2), pages 79-88, March.
- Christian Caamaño-Carrillo & Sergio Contreras-Espinoza & Orietta Nicolis, 2023. "Reconstructing the Quarterly Series of the Chilean Gross Domestic Product Using a State Space Approach," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
- Cartea, Álvaro & Karyampas, Dimitrios, 2011.
"Volatility and covariation of financial assets: A high-frequency analysis,"
Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
- Álvaro Cartea & Dimitrios Karyampas, 2009. "Volatility and Covariation of Financial Assets: A High-Frequency Analysis," Birkbeck Working Papers in Economics and Finance 0913, Birkbeck, Department of Economics, Mathematics & Statistics.
- Cartea, Álvaro & Karyampas, Dimitrios, 2009. "Volatility and covariation of financial assets: a high-frequency analysis," DEE - Working Papers. Business Economics. WB wb097609, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
- Giulio Bottazzi & Francesco Cordoni & Giulia Livieri & Stefano Marmi, 2023.
"Uncertainty in firm valuation and a cross-sectional misvaluation measure,"
Annals of Finance, Springer, vol. 19(1), pages 63-93, March.
- Giulio Bottazzi & Francesco Cordoni & Giulia Livieri & Stefano Marmi, 2020. "Uncertainty in Firm Valuation and a Cross-Sectional Misvaluation Measure," LEM Papers Series 2020/15, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Bottazzi, Giulio & Cordoni, Francesco & Livieri, Giulia & Marmi, Stefano, 2023. "Uncertainty in firm valuation and a cross-sectional misvaluation measure," LSE Research Online Documents on Economics 118172, London School of Economics and Political Science, LSE Library.
- Dias, Gustavo Fruet & Kapetanios, George, 2018.
"Estimation and forecasting in vector autoregressive moving average models for rich datasets,"
Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
- Gustavo Fruet Dias & George Kapetanios, 2014. "Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets," CREATES Research Papers 2014-37, Department of Economics and Business Economics, Aarhus University.
- Robert A. Hill & Paulo M. M. Rodrigues, 2022.
"Forgetting approaches to improve forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
- Paulo M.M. Rodrigues & Robert Hill, 2022. "Forgetting Approaches to Improve Forecasting," Working Papers w202208, Banco de Portugal, Economics and Research Department.
- Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
More about this item
Keywords
VARMA estimation; Maximum likelihood; Canonical factorization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:10:y:2019:i:c:p:27-52. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.