IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v26y2017ipap225-235.html
   My bibliography  Save this article

Estimating the cooling capacity of green infrastructures to support urban planning

Author

Listed:
  • Zardo, L.
  • Geneletti, D.
  • Pérez-Soba, M.
  • Van Eupen, M.

Abstract

Heatwaves are threatening human wellbeing in our cities, but Green Urban Infrastructures (GUI) can contribute to reduce temperatures and the associated health risks, by virtue of their cooling capacity. GUI present different typologies and consequently different key components, such as soil cover, tree canopy cover and shape, which determines their capacity to provide cooling. The aim of this study is to propose an approach to estimate the cooling capacity provided by GUI in order to generate useful information for urban planners. The methods are based on the review of the literature to identify the functions of GUI that are involved in providing cooling, and the components of GUI that determine those functions, and then to combine them to provide an overall assessment of the cooling capacity. The approach was used to assess 50 different typologies of GUI, which are result of different combinations of the components that influence the cooling, for three climatic regions. An illustrative case study in the city of Amsterdam show the applicability of the approach. This work provides a contribution in the panorama of Ecosystem Service assessment tools to support the mainstreaming of Ecosystem-based measures (such as the creation of GUI) in the planning practice.

Suggested Citation

  • Zardo, L. & Geneletti, D. & Pérez-Soba, M. & Van Eupen, M., 2017. "Estimating the cooling capacity of green infrastructures to support urban planning," Ecosystem Services, Elsevier, vol. 26(PA), pages 225-235.
  • Handle: RePEc:eee:ecoser:v:26:y:2017:i:pa:p:225-235
    DOI: 10.1016/j.ecoser.2017.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041617301171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2017.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    2. Hübler, Michael & Klepper, Gernot & Peterson, Sonja, 2008. "Costs of climate change: The effects of rising temperatures on health and productivity in Germany," Ecological Economics, Elsevier, vol. 68(1-2), pages 381-393, December.
    3. Escobedo, Francisco J. & Adams, Damian C. & Timilsina, Nilesh, 2015. "Urban forest structure effects on property value," Ecosystem Services, Elsevier, vol. 12(C), pages 209-217.
    4. McPhearson, Timon & Kremer, Peleg & Hamstead, Zoé A., 2013. "Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land," Ecosystem Services, Elsevier, vol. 5(C), pages 11-26.
    5. Raffaele Vignola & Bruno Locatelli & Celia Martinez & Pablo Imbach, 2009. "Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 691-696, December.
    6. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregg C. Brill & Pippin M. L. Anderson & Patrick O’Farrell, 2022. "Relational Values of Cultural Ecosystem Services in an Urban Conservation Area: The Case of Table Mountain National Park, South Africa," Land, MDPI, vol. 11(5), pages 1-28, April.
    2. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    3. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    4. McInnes, R.J. & Everard, M., 2017. "Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka," Ecosystem Services, Elsevier, vol. 25(C), pages 89-105.
    5. Danley, Brian & Widmark, Camilla, 2016. "Evaluating conceptual definitions of ecosystem services and their implications," Ecological Economics, Elsevier, vol. 126(C), pages 132-138.
    6. Paul Swagemakers & Maria Dolores Dominguez Garcia & Amanda Onofa Torres & Henk Oostindie & Jeroen C. J. Groot, 2017. "A Values-Based Approach to Exploring Synergies between Livestock Farming and Landscape Conservation in Galicia (Spain)," Sustainability, MDPI, vol. 9(11), pages 1-16, October.
    7. Jin Han Park & Dong Kun Lee & Chan Park & Ho Gul Kim & Tae Yong Jung & Songyi Kim, 2017. "Park Accessibility Impacts Housing Prices in Seoul," Sustainability, MDPI, vol. 9(2), pages 1-14, January.
    8. Häyhä, Tiina & Franzese, Pier Paolo, 2014. "Ecosystem services assessment: A review under an ecological-economic and systems perspective," Ecological Modelling, Elsevier, vol. 289(C), pages 124-132.
    9. Karsten Grunewald & Olaf Bastian ., 2017. "Special Issue: “Maintaining Ecosystem Services to Support Urban Needs”," Sustainability, MDPI, vol. 9(9), pages 1-9, September.
    10. Yuan Gong & Mengmeng Cai & Lei Yao & Linsong Cheng & Chunxu Hao & Zheng Zhao, 2022. "Assessing Changes in the Ecosystem Services Value in Response to Land-Use/Land-Cover Dynamics in Shanghai from 2000 to 2020," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    11. Francesca Vignoli & Claudia de Luca & Simona Tondelli, 2021. "A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    12. Sutton, Paul C. & Anderson, Sharolyn J., 2016. "Holistic valuation of urban ecosystem services in New York City's Central Park," Ecosystem Services, Elsevier, vol. 19(C), pages 87-91.
    13. Brown, Melanie G. & Quinn, John E., 2018. "Zoning does not improve the availability of ecosystem services in urban watersheds. A case study from Upstate South Carolina, USA," Ecosystem Services, Elsevier, vol. 34(PB), pages 254-265.
    14. van den Belt, Marjan & Stevens, Sharon M., 2016. "Transformative agenda, or lost in the translation? A review of top-cited articles in the first four years of Ecosystem Services," Ecosystem Services, Elsevier, vol. 22(PA), pages 60-72.
    15. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    16. Marando, Federica & Salvatori, Elisabetta & Sebastiani, Alessandro & Fusaro, Lina & Manes, Fausto, 2019. "Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy," Ecological Modelling, Elsevier, vol. 392(C), pages 92-102.
    17. Dickinson, Dawn C. & Hobbs, Richard J., 2017. "Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research," Ecosystem Services, Elsevier, vol. 25(C), pages 179-194.
    18. Sha Chen & Guan Li & Zhongguo Xu & Yuefei Zhuo & Cifang Wu & Yanmei Ye, 2019. "Combined Impact of Socioeconomic Forces and Policy Implications: Spatial-Temporal Dynamics of the Ecosystem Services Value in Yangtze River Delta, China," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    19. Kronenberg, Jakub, 2015. "Why not to green a city? Institutional barriers to preserving urban ecosystem services," Ecosystem Services, Elsevier, vol. 12(C), pages 218-227.
    20. Denise Boehnke & Alice Krehl & Kai Mörmann & Rebekka Volk & Thomas Lützkendorf & Elias Naber & Ronja Becker & Stefan Norra, 2022. "Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:26:y:2017:i:pa:p:225-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.