IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/08-06.html
   My bibliography  Save this paper

Efficient estimation of the semiparametric spatial autoregressive model

Author

Listed:
  • Peter Robinson

    (Institute for Fiscal Studies and London School of Economics)

Abstract

Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing non stochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series non parametric estimates of the score function are employed inadaptive estimates of parameters of interest. These estimates are as efficient as ones based on a correct form, in particular they are more effcient than pseudo-Gaussian maximum likelihood estimates at non-Gaussian distributions. Two different adaptive estimates are considered.One entails astringent condition on the spatial weight matrix,and is suitable only when observations have substantially many "neighbours". The other adaptive estimate relaxes this requirement, at the expense of alternative conditions and possible computational expense. A Monte Carlo study of finite sample performance is included.

Suggested Citation

  • Peter Robinson, 2006. "Efficient estimation of the semiparametric spatial autoregressive model," CeMMAP working papers CWP08/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:08/06
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0806.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Rudolf Beran, 1976. "Adaptive estimates for autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 28(1), pages 77-89, December.
    3. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    4. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    5. Newey, Whitney K., 1988. "Adaptive estimation of regression models via moment restrictions," Journal of Econometrics, Elsevier, vol. 38(3), pages 301-339, July.
    6. Case, Anne, 1992. "Neighborhood influence and technological change," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 491-508, September.
    7. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    8. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter M Robinson, 2009. "Correlation Testing in Time Series, SpatialandCross-Sectional Data," STICERD - Econometrics Paper Series 530, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Robinson, Peter, 2008. "Correlation testing in time series, spatial and cross-sectional data," LSE Research Online Documents on Economics 25470, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robinson, P.M., 2010. "Efficient estimation of the semiparametric spatial autoregressive model," Journal of Econometrics, Elsevier, vol. 157(1), pages 6-17, July.
    2. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Robinson, Peter M., 2007. "Efficient estimation of the semiparametric spatial autoregressive model," LSE Research Online Documents on Economics 4535, London School of Economics and Political Science, LSE Library.
    4. Peter M Robinson, 2007. "Efficient Estimation of the SemiparametricSpatial Autoregressive Model," STICERD - Econometrics Paper Series 515, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.
    6. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    7. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    8. repec:esx:essedp:772 is not listed on IDEAS
    9. Gupta, A, 2015. "Nonparametric specification testing via the trinity of tests," Economics Discussion Papers 15619, University of Essex, Department of Economics.
    10. Zhengyu Zhang & Pingfang Zhu, 2010. "A More Efficient Best Spatial Three-stage Least Squares Estimator for Spatial Autoregressive Models," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 155-184, May.
    11. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    12. Gupta, Abhimanyu, 2018. "Nonparametric specification testing via the trinity of tests," Journal of Econometrics, Elsevier, vol. 203(1), pages 169-185.
    13. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    14. repec:esx:essedp:774 is not listed on IDEAS
    15. Haoying Wang, 2018. "Pricing used books on Amazon.com: a spatial approach to price dispersion," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(1), pages 99-117, January.
    16. repec:asg:wpaper:1045 is not listed on IDEAS
    17. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    18. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    19. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    20. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    21. Zhenlin Yang, 2006. "On Joint Modelling and Testing for Local and Global Spatial Externalities," Working Papers 25-2006, Singapore Management University, School of Economics.
    22. Gupta, Abhimanyu, 2023. "Efficient closed-form estimation of large spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 148-167.
    23. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.

    More about this item

    Keywords

    Spatial autoregression; Efficient estimation; Adaptive estimation; Simultaneity bias.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:08/06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.