IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002801.html
   My bibliography  Save this article

Increase in young forests, more than climate change may accelerate future colonization of temperate tree species in mixedwood boreal stands

Author

Listed:
  • Soubeyrand, Maxence
  • Gennaretti, Fabio
  • Brice, Marie-Hélène
  • Grondin, Pierre
  • Bergeron, Yves
  • Marchand, Philippe

Abstract

Temperate hardwood tree species may take advantage of climate change to migrate northward tracking their optimal growth and survival niches. Other factors than climate could constrain or facilitate their establishment north of their actual range, such as competitive interactions, their ability to disperse, and forest management. The objectives of this study were to model the ability of temperate tree species to colonize boreal mixedwood stands of Eastern Canada from a few temperate tree seeders, considering the effects of climate change, competitive interactions, and specific successional stages of the receiving stands. We used the individual based forest model SORTIE-ND with adult growth forced by four different projected climate change scenarios. To mimic the natural colonization of temperate trees from marginal populations eventually established by long-distance migration, we replaced a patch in the center of the simulated stands with temperate tree species, i.e., red maple, sugar maple or yellow birch. We then performed a sensitivity analysis on the parameters determining the growth, dispersal, and mortality of temperate tree species to determine which of these processes was critical to their expansion. All three temperate tree species were able to colonize the boreal stands with higher performance in younger stands, and greater colonization skills for yellow birch. At the 2100 horizon, the impact of the climate scenarios on the final basal area of temperate tree species was minor. Processes mostly driven by competition and species auto-ecology, including dispersion, mortality, and juvenile growth parameters, were the most important for the colonization capacity. Our results suggest that the expansion of temperate tree species from already established northern marginal populations would be minimally affected by climate change, and that forest management could have a more significant impact by rejuvenating boreal mixedwood landscapes.

Suggested Citation

  • Soubeyrand, Maxence & Gennaretti, Fabio & Brice, Marie-Hélène & Grondin, Pierre & Bergeron, Yves & Marchand, Philippe, 2024. "Increase in young forests, more than climate change may accelerate future colonization of temperate tree species in mixedwood boreal stands," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002801
    DOI: 10.1016/j.ecolmodel.2024.110892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.