IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v476y2023ics0304380022003118.html
   My bibliography  Save this article

SEIR-Metapopulation model of potential spread of West Nile virus

Author

Listed:
  • Bhowmick, Suman
  • Gethmann, Jörn
  • Conraths, Franz J.
  • Sokolov, Igor M.
  • Lentz, Hartmut H.K.

Abstract

In 2018, West Nile Virus (WNV) was detected for the first time in Germany. Since the first detection, 36 human cases and 175 cases in horses and birds are detected. The transmission cycle of West Nile Virus includes birds and mosquitoes and as dead-end hosts — humans and horses. Spatial dissemination of the disease is caused by the movements of birds and mosquitoes. It should be noted that the vector activity and the spread of WNV are not entirely intertwined but there is a greater scale of overlap between it. The dissemination process is rather complicated and it can not only be attributed to different weather driven factors like temperature but also other biological factors i.e. vector competency, habitat suitability etc. In our current study, we have restricted our modelling effort only to temperature dependent to simplify the modelling assumptions. While the activity and movement of mosquitoes are depending mainly on temperature, in the birds there is a complex movement pattern caused by local birds and long-range dispersal birds. To this end, we have developed a metapopulation-network model to delineate the potential spatial distribution and spread of WNV across Germany. Our model combines vector, local birds, and long-range dispersal birds contact networks. We have assumed different distance dispersal kernels models for the vector and avian populations with the intention to include short and long-range dispersal. The model includes spatial variation of mosquito abundance and the movements to resemble the reality.

Suggested Citation

  • Bhowmick, Suman & Gethmann, Jörn & Conraths, Franz J. & Sokolov, Igor M. & Lentz, Hartmut H.K., 2023. "SEIR-Metapopulation model of potential spread of West Nile virus," Ecological Modelling, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s0304380022003118
    DOI: 10.1016/j.ecolmodel.2022.110213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022003118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laperrière, Vincent & Brugger, Katharina & Rubel, Franz, 2016. "Cross-scale modeling of a vector-borne disease, from the individual to the metapopulation: The seasonal dynamics of sylvatic plague in Kazakhstan," Ecological Modelling, Elsevier, vol. 342(C), pages 34-48.
    2. Sifat A Moon & Lee W Cohnstaedt & D Scott McVey & Caterina M Scoglio, 2019. "A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    3. Natalia Stefanini Da Silveira & Bernardo Brandão S Niebuhr & Renata de Lara Muylaert & Milton Cezar Ribeiro & Marco Aurélio Pizo, 2016. "Effects of Land Cover on the Movement of Frugivorous Birds in a Heterogeneous Landscape," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    2. Russell, Robin E. & Walsh, Daniel P. & Samuel, Michael D. & Grunnill, Martin D. & Rocke, Tonie E., 2021. "Space matters: host spatial structure and the dynamics of plague transmission," Ecological Modelling, Elsevier, vol. 443(C).
    3. Rajabi, Mohammadreza & Mansourian, Ali & Pilesjö, Petter & Shirzadi, Mohammad Reza & Fadaei, Reza & Ramazanpour, Javad, 2018. "A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus," Ecological Modelling, Elsevier, vol. 370(C), pages 33-49.
    4. Qiqi Yang & Ben Wang & Phillipe Lemey & Lu Dong & Tong Mu & R. Alex Wiebe & Fengyi Guo & Nídia Sequeira Trovão & Sang Woo Park & Nicola Lewis & Joseph L.-H. Tsui & Sumali Bajaj & Yachang Cheng & Luoju, 2024. "Synchrony of Bird Migration with Global Dispersal of Avian Influenza Reveals Exposed Bird Orders," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Joseph D. Bailey & Edward A. Codling, 2021. "Emergence of the wrapped Cauchy distribution in mixed directional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 229-246, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:476:y:2023:i:c:s0304380022003118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.