IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003793.html
   My bibliography  Save this article

Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size

Author

Listed:
  • Zhang, Chen
  • Zhu, Zixuan
  • Špoljar, Maria
  • Kuczyńska-Kippen, Natalia
  • Dražina, Tvrtko
  • Cvetnić, Matija
  • Mleczek, Mirosław

Abstract

Zooplankton is an essential part of the simulation in ecological process-based models and rigorous calibration of the zooplankton module lacks relevant modeling research that can predict the response of zooplankton biomass to varied environmental factors. The paper therefore builds a one-dimensional lake ecology model PCLake, which quantifies the dynamic effects on zooplankton in small water bodies distinguished by lake size and eutrophication status in warming climates. Based on the main geometric characteristics among a series of shallow water bodies, we constructed three lake models, namely, a northern lake with a larger area (> 0.1 ha) in Poland (Lake NL), a northern lake with a smaller (< 0.1 ha) area in Poland (Lake NS), and a southern lake with the smallest area in Croatia (Lake SS). Data from 2017 to 2018, including water temperature, dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), and zooplankton, were used to calibrate and verify models for three shallow water body categories and uncertainty analyses were carried out to support the credibility of our models. Further, to discuss the potential driving forces of environmental factors on zooplankton, we set up a series of scenarios in which atmospheric temperature and nutrient input were changed. Zooplankton are only considered as a common pool and therefore only how biomass varied can be obtained. Warming resulted in a decline of zooplankton in the lakes located in Northern Europe, with peak decreases in zooplankton biomass more than four times higher in Lake NS than in Lake NL. In addition, due to multiple nutrient loading scenarios, incoming nitrogen and phosphorus concentrations were found to have a huge impact on zooplankton biomass in Lake NL. Specifically, relative to the original eutrophic level, the average annual biomass of zooplankton increased by 90% with a 75% increase in organic nitrogen over the original eutrophic level and decreased by more than 50% with a 75% decrease in inorganic phosphorus. Hence, lake size characteristics should be taken into account in management and restoration as they may be synergistic with in-lake biological and abiotic processes under complex environmental forces.

Suggested Citation

  • Zhang, Chen & Zhu, Zixuan & Špoljar, Maria & Kuczyńska-Kippen, Natalia & Dražina, Tvrtko & Cvetnić, Matija & Mleczek, Mirosław, 2022. "Ecosystem models indicate zooplankton biomass response to nutrient input and climate warming is related to lake size," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003793
    DOI: 10.1016/j.ecolmodel.2021.109837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mooij, W.M. & De Senerpont Domis, L.N. & Janse, J.H., 2009. "Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model," Ecological Modelling, Elsevier, vol. 220(21), pages 3011-3020.
    2. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
    3. Janse, J.H. & Scheffer, M. & Lijklema, L. & Van Liere, L. & Sloot, J.S. & Mooij, W.M., 2010. "Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty," Ecological Modelling, Elsevier, vol. 221(4), pages 654-665.
    4. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    5. Pham, Hung Vuong & Sperotto, Anna & Torresan, Silvia & Acuña, Vicenç & Jorda-Capdevila, Dídac & Rianna, Guido & Marcomini, Antonio & Critto, Andrea, 2019. "Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale," Ecosystem Services, Elsevier, vol. 40(C).
    6. Trolle, Dennis & Skovgaard, Henrik & Jeppesen, Erik, 2008. "The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM–CAEDYM," Ecological Modelling, Elsevier, vol. 219(1), pages 138-152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Long & Li, Yiping & Zhao, Xu & Tillotson, Martin R. & Wang, Wencai & Zhang, Shuangshuang & Sarpong, Linda & Asmaa, Qhtan & Pan, Baozhu, 2018. "Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China," Ecological Modelling, Elsevier, vol. 375(C), pages 1-12.
    2. Ekaterini Hadjisolomou & Konstantinos Stefanidis & George Papatheodorou & Evanthia Papastergiadou, 2016. "Assessing the Contribution of the Environmental Parameters to Eutrophication with the Use of the “PaD” and “PaD2” Methods in a Hypereutrophic Lake," IJERPH, MDPI, vol. 13(8), pages 1-14, July.
    3. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    4. Mayer, Alex & Jones, Kelly & Hunt, David & Manson, Robert & Carter Berry, Z. & Asbjornsen, Heidi & Wright, Timothy Max & Salcone, Jacob & Lopez Ramirez, Sergio & Ávila-Foucat, Sophie & Von Thaden Ugal, 2022. "Assessing ecosystem service outcomes from payments for hydrological services programs in Veracruz, Mexico: Future deforestation threats and spatial targeting," Ecosystem Services, Elsevier, vol. 53(C).
    5. Missaghi, Shahram & Hondzo, Miki, 2010. "Evaluation and application of a three-dimensional water quality model in a shallow lake with complex morphometry," Ecological Modelling, Elsevier, vol. 221(11), pages 1512-1525.
    6. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    7. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.
    8. Zou, Rui & Wu, Zhen & Zhao, Lei & Elser, James J. & Yu, Yanhong & Chen, Yihui & Liu, Yong, 2020. "Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling," Ecological Modelling, Elsevier, vol. 416(C).
    9. Qi Wang & Leon Boegman, 2021. "Multi-Year Simulation of Western Lake Erie Hydrodynamics and Biogeochemistry to Evaluate Nutrient Management Scenarios," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    10. Weinberger, Stefan & Vetter, Mark, 2012. "Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee," Ecological Modelling, Elsevier, vol. 244(C), pages 38-48.
    11. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    12. Dehuan Li & Wei Sun & Fan Xia & Yixuan Yang & Yujing Xie, 2021. "Can Habitat Quality Index Measured Using the InVEST Model Explain Variations in Bird Diversity in an Urban Area?," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    13. Akomeah, Eric & Lindenschmidt, Karl-Erich & Chapra, Steven C., 2019. "Comparison of aquatic ecosystem functioning between eutrophic and hypereutrophic cold-region river-lake systems," Ecological Modelling, Elsevier, vol. 393(C), pages 25-36.
    14. Osakpolor, Stephen E. & Kattwinkel, Mira & Schirmel, Jens & Feckler, Alexander & Manfrin, Alessandro & Schäfer, Ralf B., 2021. "Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems," Ecological Modelling, Elsevier, vol. 458(C).
    15. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    16. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    17. Jinjin Wu & Xueru Jin & Zhe Feng & Tianqian Chen & Chenxu Wang & Dingrao Feng & Jiaqi Lv, 2021. "Relationship of Ecosystem Services in the Beijing–Tianjin–Hebei Region Based on the Production Possibility Frontier," Land, MDPI, vol. 10(8), pages 1-21, August.
    18. Mattsson, B.J. & Runge, M.C. & Devries, J.H. & Boomer, G.S. & Eadie, J.M. & Haukos, D.A. & Fleskes, J.P. & Koons, D.N. & Thogmartin, W.E. & Clark, R.G., 2012. "A modeling framework for integrated harvest and habitat management of North American waterfowl: Case-study of northern pintail metapopulation dynamics," Ecological Modelling, Elsevier, vol. 225(C), pages 146-158.
    19. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    20. Bingjie Song & Guy M. Robinson & Douglas K. Bardsley, 2020. "Measuring Multifunctional Agricultural Landscapes," Land, MDPI, vol. 9(8), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.