IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v453y2021ics0304380021001745.html
   My bibliography  Save this article

A multispecies size-structured matrix model incorporating seasonal dynamics

Author

Listed:
  • Xia, Shujuan
  • Yamakawa, Takashi
  • Zhang, Chongliang
  • Ren, Yiping

Abstract

Multi-species size spectrum models (MSSMs) have been widely used to investigate and understand the dynamics of marine communities impacted by fishing and environmental changes to support ecosystem-based fisheries management. The continuous nature of the modelled processes makes it challenging to incorporate periodic biological processes and discontinuous life-history traits into MSSMs; therefore, a discrete multi-species model is needed. We developed a new size-structured matrix model with discrete processes to describe multi-species interactions and energy flows through predation, reproduction, metabolism, and mortality in matrix forms. A framework for assessing the population-level consequences of capital and income breeding strategies was developed, with seasonal properties. Preliminary investigations were conducted on a theoretical community comprising eight interacting species with different reproductive strategies. The utility of our model was demonstrated by showing emergent properties in the seasonal dynamics of marine communities and life-history traits such as survival, growth, and reproduction of capital and income breeders. The model enabled exploration of population dynamics caused by migration at the ecosystem level. An example application of the model in marine protected areas (MPAs), where species undertook seasonal spawning migrations, indicated that the size of MPAs may affect their potential conservation and economic benefits to fisheries. This model has the potential to unravel the relationships between drivers and seasonal dynamics and to assess the effectiveness of fisheries management strategies such as seasonal closure of fishing.

Suggested Citation

  • Xia, Shujuan & Yamakawa, Takashi & Zhang, Chongliang & Ren, Yiping, 2021. "A multispecies size-structured matrix model incorporating seasonal dynamics," Ecological Modelling, Elsevier, vol. 453(C).
  • Handle: RePEc:eee:ecomod:v:453:y:2021:i:c:s0304380021001745
    DOI: 10.1016/j.ecolmodel.2021.109612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akihiro Manabe & Takashi Yamakawa & Shuhei Ohnishi & Tatsuro Akamine & Yoji Narimatsu & Hiroshige Tanaka & Tetsuichiro Funamoto & Yuji Ueda & Takeo Yamamoto, 2018. "A novel growth function incorporating the effects of reproductive energy allocation," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-18, June.
    2. Alasdair I. Houston & Philip A. Stephens & Ian L. Boyd & Karin C. Harding & John M. McNamara, 2007. "Capital or income breeding? A theoretical model of female reproductive strategies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(1), pages 241-250, January.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    4. Arseniy Karkach, 2006. "Trajectories and models of individual growth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(12), pages 347-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    2. Carl‐Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2021. "Fetal origins—A life cycle model of health and aging from conception to death," Health Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 1276-1290, June.
    3. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    4. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    5. Giannetti, Biagio F. & Marcilio, Maria De Fatima D.F.B. & Coscieme, Luca & Agostinho, Feni & Liu, Gengyuan & Almeida, Cecilia M.V.B., 2019. "Howard Odum’s “Self-organization, transformity and information”: Three decades of empirical evidence," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    6. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    7. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    8. Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    9. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    10. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    11. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    12. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    13. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    14. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    15. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    16. He, Ji-Huan, 2006. "Application of E-infinity theory to biology," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 285-289.
    17. Brolly, Matthew & Woodhouse, Iain H., 2012. "A “Matchstick Model” of microwave backscatter from a forest," Ecological Modelling, Elsevier, vol. 237, pages 74-87.
    18. Eva Maria Griebeler & Nicole Klein & P Martin Sander, 2013. "Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-17, June.
    19. Olivier Bouba-Olga, 2018. "Les fonctions métropolitaines sont-elles de plus en plus métropolitaines ?," Working Papers hal-01777495, HAL.
    20. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:453:y:2021:i:c:s0304380021001745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.