IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v430y2020ics0304380020301423.html
   My bibliography  Save this article

Using qualitative network models to assess the influence of mussel culture on ecosystem dynamics

Author

Listed:
  • Forget, Nathalie L.
  • Duplisea, Daniel E.
  • Sardenne, Fany
  • McKindsey, Christopher W.

Abstract

The expansion of the aquaculture industry in the last several decades has raised concerns about potential ecological impacts of the industry. Bivalve culture, particularly mussel farming, relies on naturally occurring plankton and numerous studies have demonstrated top-down control on phytoplankton, increased nutrients through excretion of metabolic wastes and remineralization of faeces and pseudofaeces, and bottom-up effects on predators and scavengers through mussel fall-off. However, results are inconsistent between studies, and hydrodynamic conditions and nutrient availability are thought to play an important role in the magnitude and the direction of the ecological effects of mussel culture on the surrounding ecosystem. We used qualitative network models (QNMs), to outline a general model that integrates these environmental conditions and (1) evaluated the ability of different model configurations to reproduce known responses to perturbations, (2) analyzed the behaviour of key components to contrasting hydrodynamic and nutrient condition scenarios, and (3) identified the most influential features of the derived scenarios. The model that included uncertain linkages to characterize unknown relationships performed best based on predetermined validation criteria; the addition of semi-quantitative information on the relative strength of certain linkages improved accuracy and sign determinacy of outcomes. The presence of suspended mussel culture negatively affected primary producers, zooplankton and deposit-feeders, and had a positive effect on predators and scavengers, especially in low-energy environments. Hydrodynamic conditions were shown to have a major impact on the response of the community to mussel culture, while nutrient availability had a very minor impact.

Suggested Citation

  • Forget, Nathalie L. & Duplisea, Daniel E. & Sardenne, Fany & McKindsey, Christopher W., 2020. "Using qualitative network models to assess the influence of mussel culture on ecosystem dynamics," Ecological Modelling, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301423
    DOI: 10.1016/j.ecolmodel.2020.109070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020301423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grant, Jon & Curran, Kristian J. & Guyondet, Thomas L. & Tita, Guglielmo & Bacher, Cédric & Koutitonsky, Vladimir & Dowd, Michael, 2007. "A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée, Iles-de-la-Madeleine, Québec," Ecological Modelling, Elsevier, vol. 200(1), pages 193-206.
    2. Stephani G. Zador & Sarah K. Gaichas & Stephen Kasperski & Colette L. Ward & Rachael E. Blake & Natalie C. Ban & Amber Himes-Cornell & J. Zachary Koehn, 2017. "Linking ecosystem processes to communities of practice through commercially fished species in the Gulf of Alaska," Post-Print hal-02149951, HAL.
    3. David Shorthouse & Angela Riedel & Emma Kerr & Luisa Pedro & Dóra Bihary & Shamith Samarajiwa & Carla P. Martins & Jacqueline Shields & Benjamin A. Hall, 2018. "Exploring the role of stromal osmoregulation in cancer and disease using executable modelling," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    4. Goedegebuure, Merel & Melbourne-Thomas, Jessica & Corney, Stuart P. & Hindell, Mark A. & Constable, Andrew J., 2017. "Beyond big fish: The case for more detailed representations of top predators in marine ecosystem models," Ecological Modelling, Elsevier, vol. 359(C), pages 182-192.
    5. Ren, Jeffrey S. & Ross, Alex H. & Hadfield, Mark G. & Hayden, Barbara J., 2010. "An ecosystem model for estimating potential shellfish culture production in sheltered coastal waters," Ecological Modelling, Elsevier, vol. 221(3), pages 527-539.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Yi & Kristensen, Nadiah P. & Buckley, Yvonne M. & Maple, Dion J. & West, Judith & McDonald-Madden, Eve, 2020. "Predicting the ecosystem-wide impacts of eradication with limited information using a qualitative modelling approach," Ecological Modelling, Elsevier, vol. 430(C).
    2. Ren, Jeffrey S. & Stenton-Dozey, Jeanie & Plew, David R. & Fang, Jianguang & Gall, Mark, 2012. "An ecosystem model for optimising production in integrated multitrophic aquaculture systems," Ecological Modelling, Elsevier, vol. 246(C), pages 34-46.
    3. Holland, E.P. & Aegerter, J.N. & Smith, G.C., 2007. "Spatial sensitivity of a generic population model, using wild boar (Sus scrofa) as a test case," Ecological Modelling, Elsevier, vol. 205(1), pages 146-158.
    4. Zhao, Yunxia & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Sun, Ke & Liu, Yi & Wu, Wenguang & Wang, Wei, 2019. "An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems," Ecological Modelling, Elsevier, vol. 393(C), pages 1-11.
    5. Yu, Shiyang & Song, Da & Fan, Meng & Xie, Congbo, 2023. "Effects of temperature and salinity on growth of Aurelia aurita," Ecological Modelling, Elsevier, vol. 476(C).
    6. Caill-Milly, N. & Garmendia, J. Bald & D'Amico, F. & Guyader, O. & Dang, C. & Bru, N., 2022. "Adapting a dynamic system model using life traits and local fishery knowledge — Application to a population of exploited marine bivalves (Ruditapes philippinarum) in a mesotidal coastal lagoon," Ecological Modelling, Elsevier, vol. 470(C).
    7. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    8. Geček, Sunčana & Legović, Tarzan, 2010. "Towards carrying capacity assessment for aquaculture in the Bolinao Bay, Philippines: A numerical study of tidal circulation," Ecological Modelling, Elsevier, vol. 221(10), pages 1394-1412.
    9. Ricci, P. & Sion, L. & Capezzuto, F. & Cipriano, G. & D'Onghia, G. & Libralato, S. & Maiorano, P. & Tursi, A. & Carlucci, R., 2021. "Modelling the trophic roles of the demersal Chondrichthyes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 444(C).
    10. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    11. Ren, Jeffrey S. & Jin, Xianshi & Yang, Tao & Kooijman, Sebastiaan A.L.M. & Shan, Xiujuan, 2020. "A dynamic energy budget model for small yellow croaker Larimichthys polyactis: Parameterisation and application in its main geographic distribution waters," Ecological Modelling, Elsevier, vol. 427(C).
    12. Fan, L.I.N. & Meirong, D.U. & Hui, L.I.U. & Jianguang, F.A.N.G. & Lars, ASPLIN & Zengjie, J.I.A.N.G., 2020. "A physical-biological coupled ecosystem model for integrated aquaculture of bivalve and seaweed in sanggou bay," Ecological Modelling, Elsevier, vol. 431(C).
    13. Ibarra, Diego A. & Fennel, Katja & Cullen, John J., 2014. "Coupling 3-D Eulerian bio-physics (ROMS) with individual-based shellfish ecophysiology (SHELL-E): A hybrid model for carrying capacity and environmental impacts of bivalve aquaculture," Ecological Modelling, Elsevier, vol. 273(C), pages 63-78.
    14. Pete, Romain & Guyondet, Thomas & Bec, Beatrice & Derolez, Valérie & Cesmat, Ludovic & Lagarde, Franck & Pouvreau, Stéphane & Fiandrino, Annie & Richard, Marion, 2020. "A box-model of carrying capacity of the Thau lagoon in the context of ecological status regulations and sustainable shellfish cultures," Ecological Modelling, Elsevier, vol. 426(C).
    15. Merel Goedegebuure & Jessica Melbourne-Thomas & Stuart P Corney & Clive R McMahon & Mark A Hindell, 2018. "Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-37, March.
    16. Guillaumot, Charlène & Saucède, Thomas & Morley, Simon A. & Augustine, Starrlight & Danis, Bruno & Kooijman, Sebastiaan, 2020. "Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)?," Ecological Modelling, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.