IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v406y2019icp121-132.html
   My bibliography  Save this article

Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients

Author

Listed:
  • Cheng, Yiwei
  • Bouskill, Nicholas J.
  • Brodie, Eoin L.

Abstract

Eukaryotic microalgae and prokaryotic cyanobacteria (often collectively described as algae) have been proposed as a promising commercially viable feedstock for biofuels and other bioproducts. Open pond algal monocultures are subjected to environmental fluctuations (i.e. temperature), limiting productivity as environmental conditions vary. An approach to overcome such limitation is the replacement of monocultures with customized polycultures that leverage diversity-productivity relationships by exploiting complementary but uninhabited ecological niches. Defining ecological niche complementarity requires an understanding of how traits and trade-offs interact across environmental gradients and for this reason numerical models represent valuable tools to explore the possible solution space prior to experimental design and verification. We have developed a trait-based, dynamic energy budget model (TB-DEB) of microalgal monocultures and polycultures, and simulated the growth of random and customized polycultures under environmental conditions (i.e. temperature, photoperiod) similar to those in operational algal ponds across the US. Each of the algal species selected as a polyculture component is defined by distinct combinations of literature-derived traits related to substrate uptake, light utilization and temperature optima. Members of the polycultures were categorized into algal functional guilds that were defined based on the interaction between thermal traits and pond thermal regimes. When compared to guilds defined by taxonomy, we demonstrate that grouping algal guilds by functional traits can be an effective approach towards improving biomass productivity in operational algal ponds. Simulations show that a polyculture represents the equivalent of a wider niche monoculture, leading to sustained productivity across seasons. Simulations also revealed that higher species diversity and higher functional diversity lead to higher system biomass. In all, results from this modeling study and earlier experimental studies highlight the idea that regardless of the functional group definition, systematic selection of species based on knowledge of physiology, ecology and the environment aiming at maximizing use of niche space through complementarity has positive impacts on system productivity.

Suggested Citation

  • Cheng, Yiwei & Bouskill, Nicholas J. & Brodie, Eoin L., 2019. "Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients," Ecological Modelling, Elsevier, vol. 406(C), pages 121-132.
  • Handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:121-132
    DOI: 10.1016/j.ecolmodel.2019.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Benemann, 2013. "Microalgae for Biofuels and Animal Feeds," Energies, MDPI, vol. 6(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    2. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    3. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Kevin J. Warner & Glenn A. Jones, 2017. "The Climate-Independent Need for Renewable Energy in the 21st Century," Energies, MDPI, vol. 10(8), pages 1-13, August.
    5. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    6. Gambelli, Danilo & Alberti, Francesca & Solfanelli, Francesco & Vairo, Daniela & Zanoli, Raffaele, 2017. "Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks," Energy Policy, Elsevier, vol. 103(C), pages 165-178.
    7. Efroymson, Rebecca A. & Pattullo, Molly B. & Mayes, Melanie A. & Mathews, Teresa J. & Mandal, Shovon & Schoenung, Susan, 2020. "Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Raslavičius, Laurencas & Striūgas, Nerijus & Felneris, Mantas, 2018. "New insights into algae factories of the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 643-654.
    9. Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
    10. Raeisossadati, Mohammadjavad & Moheimani, Navid Reza & Parlevliet, David, 2019. "Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 47-59.
    11. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    12. Xinru Zhang & Hao Yuan & Libo Guan & Xinyu Wang & Yi Wang & Zeyi Jiang & Limei Cao & Xinxin Zhang, 2019. "Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition," Energies, MDPI, vol. 12(19), pages 1-10, September.
    13. Rashid, Naim & Ur Rehman, Muhammad Saif & Sadiq, Madeha & Mahmood, Tariq & Han, Jong-In, 2014. "Current status, issues and developments in microalgae derived biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 760-778.
    14. Holbrook, Gabriel P. & Davidson, Zachary & Tatara, Robert A. & Ziemer, Norbert L. & Rosentrater, Kurt A. & Scott Grayburn, W., 2014. "Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics," Applied Energy, Elsevier, vol. 131(C), pages 386-393.
    15. Margarita Ramírez-Carmona & Leidy Rendón-Castrillón & Carlos Ocampo-López & Diego Sánchez-Osorno, 2022. "Fish Food Production Using Agro-Industrial Waste Enhanced with Spirulina sp," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    16. Dhani S. Wibawa & Muhammad A. Nasution & Ryozo Noguchi & Tofael Ahamed & Mikihide Demura & Makoto M. Watanabe, 2018. "Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant," Energies, MDPI, vol. 11(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:121-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.