IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v392y2019icp268-278.html
   My bibliography  Save this article

Simulating detection-censored movement records for home range analysis planning

Author

Listed:
  • Wszola, Lyndsie S.
  • Simonsen, Victoria L.
  • Corral, Lucía
  • Chizinski, Christopher J.
  • Fontaine, Joseph J.

Abstract

Home range estimation is an important analytical method in applied spatial ecology, yet best practices for addressing the effects of spatial variation in detection probability on home range estimates remain elusive. We introduce the R package “DiagnoseHR,” simulation tools for assessing how variation in detection probability arising from landscape, animal behavior, and methodological processes affects home range inference. We demonstrate the utility of simulation methods for home range analysis planning by comparing bias arising from three home range estimation methods under multiple detection scenarios. We simulated correlated random walks in three landscapes that varied in detection probability and constructed home ranges from locations filtered through a range of sampling protocols. Home range estimates were less biased by reduced detection probability when sampling effort was increased, but the effects of sampling day distribution were minimal. Like others, we found that kernel density estimates were the least affected by variation in detection probability, while minimum convex polygons were most affected. Our results illustrate the value of quantifying uncertainty in home range estimates and suggest that field biologists working in environments with low detection may wish to weight sample-size greater than concerns about temporal autocorrelation when designing sampling protocols.

Suggested Citation

  • Wszola, Lyndsie S. & Simonsen, Victoria L. & Corral, Lucía & Chizinski, Christopher J. & Fontaine, Joseph J., 2019. "Simulating detection-censored movement records for home range analysis planning," Ecological Modelling, Elsevier, vol. 392(C), pages 268-278.
  • Handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:268-278
    DOI: 10.1016/j.ecolmodel.2018.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    2. Wayne M Getz & Scott Fortmann-Roe & Paul C Cross & Andrew J Lyons & Sadie J Ryan & Christopher C Wilmers, 2007. "LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-11, February.
    3. Peter Guttorp & Walter W. Piegorsch & B. J. Reich & B. Gardner, 2014. "A spatial capture‐recapture model for territorial species," Environmetrics, John Wiley & Sons, Ltd., vol. 25(8), pages 630-637, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Vera-Amaro & Mario E. Rivero-Ángeles & Alberto Luviano-Juárez, 2023. "Phase-Type Distributions of Animal Trajectories with Random Walks," Mathematics, MDPI, vol. 11(17), pages 1-30, August.
    2. Mathieu Pruvot & Manigandan Lejeune & Susan Kutz & Wendy Hutchins & Marco Musiani & Alessandro Massolo & Karin Orsel, 2016. "Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    3. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    4. Benhamou, Simon & Riotte-Lambert, Louise, 2012. "Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited," Ecological Modelling, Elsevier, vol. 227(C), pages 112-116.
    5. Murray G. Efford & Matthew R. Schofield, 2020. "A spatial open‐population capture‐recapture model," Biometrics, The International Biometric Society, vol. 76(2), pages 392-402, June.
    6. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    7. Manan Gupta & Amitabh Joshi & T N C Vidya, 2017. "Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    8. Downs, Joni A. & Heller, Justin H. & Loraamm, Rebecca & Stein, Dana Oppenheim & McDaniel, Cassandra & Onorato, Dave, 2012. "Accuracy of home range estimators for homogeneous and inhomogeneous point patterns," Ecological Modelling, Elsevier, vol. 225(C), pages 66-73.
    9. Robert M Dorazio & K Ullas Karanth, 2017. "A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    10. Paul McLaughlin & Haim Bar, 2021. "A spatial capture–recapture model with attractions between individuals," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    11. Nathan J Hostetter & Nicholas J Lunn & Evan S Richardson & Eric V Regehr & Sarah J Converse, 2021. "Age-structured Jolly-Seber model expands inference and improves parameter estimation from capture-recapture data," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-19, June.
    12. Zhang, Shen & Tang, Jinjun & Wang, Haixiao & Wang, Yinhai & An, Shi, 2017. "Revealing intra-urban travel patterns and service ranges from taxi trajectories," Journal of Transport Geography, Elsevier, vol. 61(C), pages 72-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:268-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.