IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v391y2019icp1-8.html
   My bibliography  Save this article

Disentangling uncertainties from niche modeling in freshwater ecosystems

Author

Listed:
  • Parreira, Micael Rosa
  • Nabout, João Carlos
  • Tessarolo, Geiziane
  • de Souza Lima-Ribeiro, Matheus
  • Teresa, Fabrício Barreto

Abstract

Predictions by ecological niche models (ENM) are affected by several sources of uncertainty including the modeling methods and type of variables employed. The predictive uncertainty has been often assessed in terrestrial ecosystems, but it is still unknown how freshwater variables affect the performance of ENMs, contributing to unreliable predictions for aquatic species. Here, we used the ecologically and economically relevant Amazon giant catfish (Brachyplatystoma filamentosum) as a model species to assess uncertainties on ENM predictions in freshwater ecosystems. Specifically, we assessed uncertainty by coupling ENM predictions using five modeling methods and four sets of freshwater environmental variables. Our results indicate that the modeling methods and secondarily the variables account for significant uncertainty in predicting freshwater species distribution using ENM. Areas with high environmental suitability such as the Amazon large rivers and nearby areas presented high uncertainty for the methods component, and lower uncertainties for freshwater variables. Moreover, freshwater variables accounted also for uncertainties in metrics of models’ performance. Whereas Topographic variables better predicted presences (higher sensitivities and lower omission errors), Land cover and Soil variables better predicted pseudo-absences (higher specificities and lower commission errors). The Hydroclimatic variables had better accuracy metrics values (AUC and TSS) but also generated the greatest uncertainty for the final models. When included variables from all groups, ENMs presented low uncertainties and good accuracy. In sum, our findings suggest the importance of measuring and mapping the uncertainties of ENMs using freshwater environmental database.

Suggested Citation

  • Parreira, Micael Rosa & Nabout, João Carlos & Tessarolo, Geiziane & de Souza Lima-Ribeiro, Matheus & Teresa, Fabrício Barreto, 2019. "Disentangling uncertainties from niche modeling in freshwater ecosystems," Ecological Modelling, Elsevier, vol. 391(C), pages 1-8.
  • Handle: RePEc:eee:ecomod:v:391:y:2019:i:c:p:1-8
    DOI: 10.1016/j.ecolmodel.2018.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018303612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    2. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    2. Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).
    3. Mendes, Poliana & Velazco, Santiago José Elías & Andrade, André Felipe Alves de & De Marco, Paulo, 2020. "Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy," Ecological Modelling, Elsevier, vol. 431(C).
    4. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    5. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Andrea S Martinez-Vernon & James A Covington & Ramesh P Arasaradnam & Siavash Esfahani & Nicola O’Connell & Ioannis Kyrou & Richard S Savage, 2018. "An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    7. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    8. P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    10. Uwe Ligges & Sebastian Krey, 2011. "Feature clustering for instrument classification," Computational Statistics, Springer, vol. 26(2), pages 279-291, June.
    11. Arnout Van Messem & Andreas Christmann, 2010. "A review on consistency and robustness properties of support vector machines for heavy-tailed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 199-220, September.
    12. Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    13. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    14. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    15. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    17. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    18. Huisheng Wu & Maogui Hu & Yaping Zhang & Yuan Han, 2021. "An Empirical Mode Decomposition for Establishing Spatiotemporal Air Quality Trends in Shandong Province, China," Sustainability, MDPI, vol. 13(22), pages 1-10, November.
    19. Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
    20. Tyler C Shimko & Erik C Andersen, 2014. "COPASutils: An R Package for Reading, Processing, and Visualizing Data from COPAS Large-Particle Flow Cytometers," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-5, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:391:y:2019:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.