IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v387y2018icp83-95.html
   My bibliography  Save this article

Longitudinal variation in energy flow networks along a large subtropical river, China

Author

Listed:
  • Wang, Sai
  • Wang, Lin
  • Chang, Hao-Yen
  • Li, Feng
  • Tang, Jin-Peng
  • Zhou, Xing-An
  • Li, Xing
  • Tian, Shi-Mi
  • Lin, Hsing-Juh
  • Yang, Yang

Abstract

To understand the longitudinal variation in the structure and functioning of large river ecosystems, six Ecopath models were constructed to exhibit the energy flows of aquatic food webs along the subtropical East River in China. Input parameters were primarily obtained from field data collected in 2012–2016; model outputs were estimated by network analysis. Longitudinally, ecosystem characteristics of the East River had high spatial heterogeneity. The biomass, production, and consumption, of which >75.8% of each was distributed at trophic level (TL) II, were determined by aquatic insects upstream, molluscs midstream, and zooplankton downstream. Carnivorous fish occupied the maximal TL of 2.95–3.50. Due to the different trophic interactions of regional food webs, the keystone groups shifted from odonate larvae in headwaters to piscivorous fish upstream/midstream, to zooplankton downstream, and to phytoplankton near the estuary. Aquatic insects, insectivorous fish, epiphytes, and hydrophytes, all of which had ecotrophic efficiencies >0.99, were critical groups that influenced mass balance through short prey supply. The mean transfer efficiencies (TEs) through TLs IIIV had the lowest values of 1.8–4.1% upstream and increased to the highest levels of 8.0–8.4% midstream before they decreased to 6.4–7.0% downstream. The low TEs along the river were limited mainly by the lack of carnivorous fish upstream and the low predation on mollus and plankton midstream/downstream. A series of theory and information indices showed that the pristine upstream system was mature but underdeveloped in organisation; in contrast, the downstream systems in the urban and industrial reaches were immature and stressed in terms of excessive phytoplankton production and short cycling.

Suggested Citation

  • Wang, Sai & Wang, Lin & Chang, Hao-Yen & Li, Feng & Tang, Jin-Peng & Zhou, Xing-An & Li, Xing & Tian, Shi-Mi & Lin, Hsing-Juh & Yang, Yang, 2018. "Longitudinal variation in energy flow networks along a large subtropical river, China," Ecological Modelling, Elsevier, vol. 387(C), pages 83-95.
  • Handle: RePEc:eee:ecomod:v:387:y:2018:i:c:p:83-95
    DOI: 10.1016/j.ecolmodel.2018.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brey, T., 1999. "A collection of empirical relations for use in ecological modelling," Naga, The WorldFish Center, vol. 22(3), pages 24-28.
    2. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    3. Feroz Khan, M. & Panikkar, Preetha, 2009. "Assessment of impacts of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India," Ecological Modelling, Elsevier, vol. 220(18), pages 2281-2290.
    4. Darwall, William R.T. & Allison, Edward H. & Turner, George F. & Irvine, Kenneth, 2010. "Lake of flies, or lake of fish? A trophic model of Lake Malawi," Ecological Modelling, Elsevier, vol. 221(4), pages 713-727.
    5. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    6. Jia, Peiqiao & Hu, Menghong & Hu, Zhongjun & Liu, Qigen & Wu, Zhen, 2012. "Modeling trophic structure and energy flows in a typical macrophyte dominated shallow lake using the mass balanced model," Ecological Modelling, Elsevier, vol. 233(C), pages 26-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    2. Shan, Kun & Li, Lin & Wang, Xiaoxiao & Wu, Yanlong & Hu, Lili & Yu, Gongliang & Song, Lirong, 2014. "Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China," Ecological Modelling, Elsevier, vol. 291(C), pages 82-95.
    3. Barros, Mónica E. & Arriagada, Ana & Arancibia, Hugo & Neira, Sergio, 2024. "Using a time-dynamic food web model to compare predation and fishing mortality in Pleuroncodes monodon (Galatheidae: Crustaceae) and other benthic and demersal resource species off central Chile," Ecological Modelling, Elsevier, vol. 487(C).
    4. Gubiani, Éder A. & Angelini, Ronaldo & Vieira, Ludgero C.G. & Gomes, Luiz C. & Agostinho, Angelo A., 2011. "Trophic models in Neotropical reservoirs: Testing hypotheses on the relationship between aging and maturity," Ecological Modelling, Elsevier, vol. 222(23), pages 3838-3848.
    5. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    6. Gray DiLeone, A.M. & Ainsworth, C.H., 2019. "Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf," Ecological Modelling, Elsevier, vol. 392(C), pages 250-267.
    7. McGill, Lillian M. & Gerig, Brandon S. & Chaloner, Dominic T. & Lamberti, Gary A., 2017. "An ecosystem model for evaluating the effects of introduced Pacific salmon on contaminant burdens of stream-resident fish," Ecological Modelling, Elsevier, vol. 355(C), pages 39-48.
    8. Chea, Ratha & Guo, Chuanbo & Grenouillet, Gaël & Lek, Sovan, 2016. "Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health," Ecological Modelling, Elsevier, vol. 323(C), pages 1-11.
    9. Haller-Bull, Vanessa & Rovenskaya, Elena, 2019. "Optimizing functional groups in ecosystem models: Case study of the Great Barrier Reef," Ecological Modelling, Elsevier, vol. 411(C).
    10. Ricci, P. & Sion, L. & Capezzuto, F. & Cipriano, G. & D'Onghia, G. & Libralato, S. & Maiorano, P. & Tursi, A. & Carlucci, R., 2021. "Modelling the trophic roles of the demersal Chondrichthyes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 444(C).
    11. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    12. Püts, Miriam & Taylor, Marc & Núñez-Riboni, Ismael & Steenbeek, Jeroen & Stäbler, Moritz & Möllmann, Christian & Kempf, Alexander, 2020. "Insights on integrating habitat preferences in process-oriented ecological models – a case study of the southern North Sea," Ecological Modelling, Elsevier, vol. 431(C).
    13. Heinichen, Margaret & McManus, M. Conor & Lucey, Sean M. & Aydin, Kerim & Humphries, Austin & Innes-Gold, Anne & Collie, Jeremy, 2022. "Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model," Ecological Modelling, Elsevier, vol. 466(C).
    14. Woodstock, Matthew S. & Sutton, Tracey T. & Frank, Tamara & Zhang, Yuying, 2021. "An early warning sign: trophic structure changes in the oceanic Gulf of Mexico from 2011—2018," Ecological Modelling, Elsevier, vol. 445(C).
    15. Hongxiang Li & Lei Jin & Yujie Si & Jiandong Mu & Zhaoning Liu & Cunqi Liu & Yajuan Zhang, 2024. "Lake Restoration Improved Ecosystem Maturity Through Regime Shifts—A Case Study of Lake Baiyangdian, China," Sustainability, MDPI, vol. 16(21), pages 1-16, October.
    16. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    17. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    18. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    19. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    20. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:387:y:2018:i:c:p:83-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.