IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v411y2019ics030438001930314x.html
   My bibliography  Save this article

Optimizing functional groups in ecosystem models: Case study of the Great Barrier Reef

Author

Listed:
  • Haller-Bull, Vanessa
  • Rovenskaya, Elena

Abstract

Uncertainty is inherent in ecosystem modelling, however its effects on modelling results are often poorly understood or ignored. This study addresses the issue of structural uncertainty or, more specifically, model resolution and its impact on the analysis of ecosystem vulnerability to threats. While guidelines for node assignments exist, they are not always underlined with quantitative analysis. Different resolutions of a coral reef network are investigated by comparing the simulated network dynamics over time in various threat scenarios. We demonstrate that the error between a higher-resolution and a lower-resolution models increases, first slowly then rapidly with increased degree of node aggregation. This informs the choice of an optimal model resolution whereby a finer level of a food web representation yields only minimal additional accuracy, while increasing computational cost substantially. Furthermore, our analysis shows that species biomass ratio and the consumption ratio are important parameters to guide node aggregation to minimize the error.

Suggested Citation

  • Haller-Bull, Vanessa & Rovenskaya, Elena, 2019. "Optimizing functional groups in ecosystem models: Case study of the Great Barrier Reef," Ecological Modelling, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s030438001930314x
    DOI: 10.1016/j.ecolmodel.2019.108806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001930314X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    2. Daniel J.C. Skinner & Sophie A. Rocks & Simon J.T. Pollard, 2014. "A review of uncertainty in environmental risk: characterising potential natures, locations and levels," Journal of Risk Research, Taylor & Francis Journals, vol. 17(2), pages 195-219, February.
    3. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yurek, Simeon & Eaton, Mitchell J. & Lavaud, Romain & Laney, R. Wilson & DeAngelis, Donald L. & Pine, William E. & La Peyre, Megan & Martin, Julien & Frederick, Peter & Wang, Hongqing & Lowe, Michael , 2021. "Modeling structural mechanics of oyster reef self-organization including environmental constraints and community interactions," Ecological Modelling, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    2. Püts, Miriam & Taylor, Marc & Núñez-Riboni, Ismael & Steenbeek, Jeroen & Stäbler, Moritz & Möllmann, Christian & Kempf, Alexander, 2020. "Insights on integrating habitat preferences in process-oriented ecological models – a case study of the southern North Sea," Ecological Modelling, Elsevier, vol. 431(C).
    3. Heinichen, Margaret & McManus, M. Conor & Lucey, Sean M. & Aydin, Kerim & Humphries, Austin & Innes-Gold, Anne & Collie, Jeremy, 2022. "Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model," Ecological Modelling, Elsevier, vol. 466(C).
    4. Barros, Mónica E. & Arriagada, Ana & Arancibia, Hugo & Neira, Sergio, 2024. "Using a time-dynamic food web model to compare predation and fishing mortality in Pleuroncodes monodon (Galatheidae: Crustaceae) and other benthic and demersal resource species off central Chile," Ecological Modelling, Elsevier, vol. 487(C).
    5. McGill, Lillian M. & Gerig, Brandon S. & Chaloner, Dominic T. & Lamberti, Gary A., 2017. "An ecosystem model for evaluating the effects of introduced Pacific salmon on contaminant burdens of stream-resident fish," Ecological Modelling, Elsevier, vol. 355(C), pages 39-48.
    6. Ricci, P. & Sion, L. & Capezzuto, F. & Cipriano, G. & D'Onghia, G. & Libralato, S. & Maiorano, P. & Tursi, A. & Carlucci, R., 2021. "Modelling the trophic roles of the demersal Chondrichthyes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 444(C).
    7. Wang, Sai & Wang, Lin & Chang, Hao-Yen & Li, Feng & Tang, Jin-Peng & Zhou, Xing-An & Li, Xing & Tian, Shi-Mi & Lin, Hsing-Juh & Yang, Yang, 2018. "Longitudinal variation in energy flow networks along a large subtropical river, China," Ecological Modelling, Elsevier, vol. 387(C), pages 83-95.
    8. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    9. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    10. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    11. Link, Jason S. & Pranovi, Fabio & Libralato, Simone, 2022. "Simulations and interpretations of cumulative trophic theory," Ecological Modelling, Elsevier, vol. 463(C).
    12. Ricci, P. & Serpetti, N. & Cascione, D. & Cipriano, G. & D'Onghia, G. & De Padova, D. & Fanizza, C. & Ingrosso, M. & Carlucci, R., 2023. "Investigating fishery and climate change effects on the conservation status of odontocetes in the Northern Ionian Sea (Central Mediterranean Sea)," Ecological Modelling, Elsevier, vol. 485(C).
    13. Linda Lilburne & Melissa Robson-Williams & Ned Norton, 2022. "Improving Understanding and Management of Uncertainty in Science-Informed Collaborative Policy Processes," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    14. Gray DiLeone, A.M. & Ainsworth, C.H., 2019. "Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf," Ecological Modelling, Elsevier, vol. 392(C), pages 250-267.
    15. Perryman, Holly A. & Tarnecki, Joseph H. & Grüss, Arnaud & Babcock, Elizabeth A. & Sagarese, Skyler R. & Ainsworth, Cameron H. & Gray DiLeone, Alisha M., 2020. "A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts," Ecological Modelling, Elsevier, vol. 416(C).
    16. Christina Hanna & Iain White & Bruce Glavovic, 2020. "The Uncertainty Contagion: Revealing the Interrelated, Cascading Uncertainties of Managed Retreat," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    17. Natugonza, Vianny & Ogutu-Ohwayo, Richard & Musinguzi, Laban & Kashindye, Benedicto & Jónsson, Steingrímur & Valtysson, Hreidar Thor, 2016. "Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model," Ecological Modelling, Elsevier, vol. 342(C), pages 161-174.
    18. Ofir, E. & Heymans, J.J. & Shapiro, J. & Goren, M. & Spanier, E. & Gal, G., 2017. "Predicting the impact of Lake Biomanipulation based on food-web modeling—Lake Kinneret as a case study," Ecological Modelling, Elsevier, vol. 348(C), pages 14-24.
    19. Lucey, Sean M. & Gaichas, Sarah K. & Aydin, Kerim Y., 2020. "Conducting reproducible ecosystem modeling using the open source mass balance model Rpath," Ecological Modelling, Elsevier, vol. 427(C).
    20. Alexandra I. Klimenko & Diana A. Vorobeva & Sergey A. Lashin, 2023. "A New Visualization and Analysis Method for a Convolved Representation of Mass Computational Experiments with Biological Models," Mathematics, MDPI, vol. 11(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s030438001930314x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.