IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v384y2018icp198-208.html
   My bibliography  Save this article

Combining acoustic and visual detections in habitat models of Dall’s porpoise

Author

Listed:
  • Fleming, Alyson H.
  • Yack, Tina
  • Redfern, Jessica V.
  • Becker, Elizabeth A.
  • Moore, Thomas J.
  • Barlow, Jay

Abstract

Habitat-based distribution modelling is an established method for predicting species distributions and is necessary for many conservation and management applications. Cetacean habitat models have primarily been developed using data from visual surveys. However, numerous techniques exist for detecting animal presence and each capture a portion of the true population. Combining detection data gathered from multiple survey methods, such as visual and acoustic surveys, may lead to a more robust picture of a species distribution and ecology. We compare habitat models for Dall’s porpoise built with visual versus acoustic survey data from a line-transect survey in the California Current and develop a combined model, utilizing both acoustic detections and visual sightings. Combining acoustic and visual detections increases sample size and allows for detections under a greater range of oceanographic conditions. Consequently, the combined model shows a modest expansion of predicted distribution of Dall’s porpoise compared to either single-source model. However, this study reveals that acoustic and visual methods appear to be more complementary, rather than directly additive. Models built with acoustic data display differences from those built with visual data. Different predictor variables were selected across models and the acoustic model predicts a distribution shifted slightly south of the visual distribution. Results from the current study show promise for incorporating acoustics into habitat models but also identify discrepancies in population sampling between these two methods that should inform future population assessments and modelling efforts.

Suggested Citation

  • Fleming, Alyson H. & Yack, Tina & Redfern, Jessica V. & Becker, Elizabeth A. & Moore, Thomas J. & Barlow, Jay, 2018. "Combining acoustic and visual detections in habitat models of Dall’s porpoise," Ecological Modelling, Elsevier, vol. 384(C), pages 198-208.
  • Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:198-208
    DOI: 10.1016/j.ecolmodel.2018.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
    3. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    2. François Freddy Ateba & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Drissa Konaté & Sory Ibrahim Diawara & Séidina Aboubacar Samba Diakité & Ayouba Diarra & Mamadou D. Coulibaly & Mathias Dolo, 2020. "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mali," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    3. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    4. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    5. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    6. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    7. Isabel Proença & Stefan Sperlich & Duygu Savaşcı, 2015. "Semi-mixed effects gravity models for bilateral trade," Empirical Economics, Springer, vol. 48(1), pages 361-387, February.
    8. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    9. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Identifying hidden patterns in credit risk survival data using Generalised Additive Models," European Journal of Operational Research, Elsevier, vol. 277(1), pages 366-376.
    10. Longhi, C. & Musolesi, A. & Baumont, C., 2013. "Modeling the industrial dynamics of the European metropolitan areas during the process of economic integration: a semiparametric approach," Working Papers 2013-10, Grenoble Applied Economics Laboratory (GAEL).
    11. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    12. Giovanni Forchini & Raoul Theler, 2023. "Semi-parametric modelling of inefficiencies in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 59(2), pages 135-152, April.
    13. Antonio Musolesi & Hervé Cardot, 2017. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: the case of local development policies in France," Working Papers 2017036, University of Ferrara, Department of Economics.
    14. Chatla, Suneel Babu & Shmueli, Galit, 2018. "Efficient estimation of COM–Poisson regression and a generalized additive model," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 71-88.
    15. Sergei Kharin & Zuzana Kapustova & Ivan Lichner, 2023. "Price transmission between maize and poultry product markets in the Visegrád Group countries: What is more nonlinear, egg or chicken?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(12), pages 510-522.
    16. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
    17. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).
    19. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    20. Antonio Gasparrini & Fabian Scheipl & Ben Armstrong & Michael G. Kenward, 2017. "A penalized framework for distributed lag non-linear models," Biometrics, The International Biometric Society, vol. 73(3), pages 938-948, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:198-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.