IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v361y2017icp41-48.html
   My bibliography  Save this article

Complex network modeling for mechanisms of red tide occurrence: A case study in Bohai Sea and North Yellow Sea of China

Author

Listed:
  • Du, Xiangjun
  • Shao, Fengjing
  • Wu, Shunyao
  • Sun, Rencheng
  • Wang, Changying

Abstract

Red tide is an abnormal ecological phenomenon, and it severely affects marine ecosystem, economic growth and human health. The mechanism of red tide occurrence has been studied for many years, and a lot of indicators and techniques have been developed. Although these studies have effectively expanded the knowledge of mechanisms of red tide occurrence, the combination effect of water quality factors of different sea areas on red tide occurrence has not received enough attention. In this paper, a water quality factor dissimilarity network model (WDN), which can systematically reflect water quality of different sea areas, is presented. According to this model, a series of WDN networks are constructed with the data collected from monitoring stations of Bohai Sea and North Yellow Sea, and a novel red tide detection approach based on the outlier analysis of node strengths is proposed. Based on the analysis of the results obtained using this approach, the locality, the seasonality and the alternation of red tide occurrences are revealed. The validation from actual red tide events shows that our model and approach perform effectively and contribute to expanding the knowledge of mechanisms of red tide occurrence.

Suggested Citation

  • Du, Xiangjun & Shao, Fengjing & Wu, Shunyao & Sun, Rencheng & Wang, Changying, 2017. "Complex network modeling for mechanisms of red tide occurrence: A case study in Bohai Sea and North Yellow Sea of China," Ecological Modelling, Elsevier, vol. 361(C), pages 41-48.
  • Handle: RePEc:eee:ecomod:v:361:y:2017:i:c:p:41-48
    DOI: 10.1016/j.ecolmodel.2017.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017300820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Jianyu & Xiao, Peng & Zhang, Yunhuai & Zhan, Min & Cheng, Jiangwei, 2011. "A mathematical model of algal blooms based on the characteristics of complex networks theory," Ecological Modelling, Elsevier, vol. 222(20), pages 3727-3733.
    2. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    3. A. Mashaghi & A. Ramezanpour & V. Karimipour, 2004. "Investigation of a protein complex network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(1), pages 113-121, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xuan & Shi, Suixiang & Xu, Lingyu & Yu, Jie & Liu, Yaya, 2020. "Analyzing dynamic association of multivariate time series based on method of directed limited penetrable visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    2. Rodica Ioana Lung & Camelia Chira & Anca Andreica, 2014. "Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    3. Xu, Aokang & Hu, Mengjun & Shi, Jing & Bai, Qingzhu & Li, Xuehong, 2024. "Construction and optimization of ecological network in inland river basin based on circuit theory, complex network and ecological sensitivity: A case study of Gansu section of Heihe River Basin," Ecological Modelling, Elsevier, vol. 488(C).
    4. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    5. Kim, Paul & Kim, Sangwook, 2015. "Detecting overlapping and hierarchical communities in complex network using interaction-based edge clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 46-56.
    6. Liu, Meijun & Jaiswal, Ajay & Bu, Yi & Min, Chao & Yang, Sijie & Liu, Zhibo & Acuña, Daniel & Ding, Ying, 2022. "Team formation and team impact: The balance between team freshness and repeat collaboration," Journal of Informetrics, Elsevier, vol. 16(4).
    7. Li Wang & Jiang Wang & Yuanjun Bi & Weili Wu & Wen Xu & Biao Lian, 2014. "Noise-tolerance community detection and evolution in dynamic social networks," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 600-612, October.
    8. Julio I. Chapeton & John H. Wittig & Sara K. Inati & Kareem A. Zaghloul, 2022. "Micro-scale functional modules in the human temporal lobe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Angelou, Konstantinos & Maragakis, Michael & Kosmidis, Kosmas & Argyrakis, Panos, 2020. "A hybrid model for the patent citation network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    11. Jun Gui & Zeyu Zheng & Dianzheng Fu & Zihao Yang & Yuan Gao & Zhi Liu, 2020. "Dynamics of calling activity to toll-free numbers in China," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-16, March.
    12. Mattia G. Bergomi & Massimo Ferri & Pietro Vertechi & Lorenzo Zuffi, 2021. "Beyond Topological Persistence: Starting from Networks," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    13. Meng, Fanyuan & Zhu, Jiadong & Yao, Yuheng & Fenoaltea, Enrico Maria & Xie, Yubo & Yang, Pingle & Liu, Run-Ran & Zhang, Jianlin, 2023. "Disagreement and fragmentation in growing groups," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    14. Nedioui, Med Abdelhamid & Moussaoui, Abdelouahab & Saoud, Bilal & Babahenini, Mohamed Chaouki, 2020. "Detecting communities in social networks based on cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    16. An, Haizhong & Zhong, Weiqiong & Chen, Yurong & Li, Huajiao & Gao, Xiangyun, 2014. "Features and evolution of international crude oil trade relationships: A trading-based network analysis," Energy, Elsevier, vol. 74(C), pages 254-259.
    17. Zhang, Beibei & Zhou, Yadong & Xu, Xiaoyan & Wang, Dai & Guan, Xiaohong, 2016. "Dynamic structure evolution of time-dependent network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 347-358.
    18. Xuanru Zhou & Hua Zhang & Shuxian Zheng & Wanli Xing & Pei Zhao & Haiying Li, 2022. "The Crude Oil International Trade Competition Networks: Evolution Trends and Estimating Potential Competition Links," Energies, MDPI, vol. 15(7), pages 1-20, March.
    19. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    20. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:361:y:2017:i:c:p:41-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.