IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v344y2017icp73-86.html
   My bibliography  Save this article

A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes

Author

Listed:
  • Aquilué, Núria
  • De Cáceres, Miquel
  • Fortin, Marie-Josée
  • Fall, Andrew
  • Brotons, Lluís

Abstract

Land-use/land-cover (LULC) change models integrate the effects of anthropogenic drivers of landscape change. Spatially explicit LULC change models help at understanding the landscape mosaic that emerges from the interplay between local-scale decisions as well as regional and national policies. These models produce valuable spatially explicit scenarios of LULC change that underpin biodiversity impact and ecosystem services assessments. Most raster-based LULC change models adopt the demand-allocation approach to simulate land transitions (i.e. the transformation of one land-cover type to another for a given spatial unit). In a demand-allocation framework the expert fixes the demand (or quantity of change) and the LULC change model uses a spatial procedure to allocate the change (i.e. to select the cells to be transformed to the target land-cover type). Here, we propose a spatial allocation procedure that builds on the assumption that land transitions occur in two phases: change occurrence and change spreading (or contagion). The allocation procedure uses a sorted queue of cells waiting to undergone change. Three parameters (rate of change occurrence, rate of change spreading and acceleration of change-contagion) control the order of cells order in the queue, and ultimately determine the emergence and extent of patches-of-change. We performed a sensitivity analysis where we show that the relation between both rates (i.e. change occurrence and change spreading) allows patches-of-change expand before other patches arise or vice versa. We provide a simple protocol to implement the allocation procedure as the core of a spatial explicit LULC change model, and we applied this protocol in the development of a new model, called MEDLUC, that intends to replicate the most relevant transitions observed in Mediterranean landscapes: urbanisation, rural abandonment and agriculture conversion. For Catalonia, a region in NE Spain, MEDLUC reproduces the empirical patches-of-change distributions from a 16-year period at two spatial resolutions (1km2 and 1ha). Overall, our allocation procedure performs better than a null model for urbanisation and rural abandonment at both resolutions, while it does worse when modelling agriculture conversion.

Suggested Citation

  • Aquilué, Núria & De Cáceres, Miquel & Fortin, Marie-Josée & Fall, Andrew & Brotons, Lluís, 2017. "A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes," Ecological Modelling, Elsevier, vol. 344(C), pages 73-86.
  • Handle: RePEc:eee:ecomod:v:344:y:2017:i:c:p:73-86
    DOI: 10.1016/j.ecolmodel.2016.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016306676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K C Clarke & S Hoppen & L Gaydos, 1997. "A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area," Environment and Planning B, , vol. 24(2), pages 247-261, April.
    2. Castella, Jean-Christophe & Verburg, Peter H., 2007. "Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam," Ecological Modelling, Elsevier, vol. 202(3), pages 410-420.
    3. Isabel M D Rosa & Drew Purves & Carlos Souza Jr & Robert M Ewers, 2013. "Predictive Modelling of Contagious Deforestation in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    2. Pais, Silvana & Aquilué, Núria & Campos, João & Sil, Ângelo & Marcos, Bruno & Martínez-Freiría, Fernando & Domínguez, Jesús & Brotons, Lluís & Honrado, João P. & Regos, Adrián, 2020. "Mountain farmland protection and fire-smart management jointly reduce fire hazard and enhance biodiversity and carbon sequestration," Ecosystem Services, Elsevier, vol. 44(C).
    3. Canelles, Q. & Aquilué, N. & Duane, A. & Brotons, L., 2019. "From stand to landscape: modelling post-fire regeneration and species growth," Ecological Modelling, Elsevier, vol. 404(C), pages 103-111.
    4. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    5. Evan B Brooks & John W Coulston & Kurt H Riitters & David N Wear, 2020. "Using a hybrid demand-allocation algorithm to enable distributional analysis of land use change patterns," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-21, October.
    6. Zimu Jia & Bingran Ma & Jing Zhang & Weihua Zeng, 2018. "Simulating Spatial-Temporal Changes of Land-Use Based on Ecological Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing," Sustainability, MDPI, vol. 10(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Jose Manuel Ochoa-Quintero & Charlotte H. Chang & Toby A. Gardner & Mariluce Rezende Messias & William J. Sutherland & Fernanda A. C. Delben, 2017. "Habitat Loss on Rondon’s Marmoset Potential Distribution," Land, MDPI, vol. 6(1), pages 1-15, January.
    3. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    4. Shivangi S. Somvanshi & Oshin Bhalla & Phool Kunwar & Madhulika Singh & Prafull Singh, 2020. "Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1073-1091, February.
    5. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    6. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    7. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.
    8. Fondevilla, Cristian & Àngels Colomer, M. & Fillat, Federico & Tappeiner, Ulrike, 2016. "Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps)," Ecological Modelling, Elsevier, vol. 322(C), pages 101-114.
    9. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    10. Alireza Salahi Moghadam & Ali Soltani & Bruno Parolin, 2018. "Transforming and changing urban centres: the experience of Sydney from 1981 to 2006," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 37-53, March.
    11. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    12. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    13. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    14. Acevedo, Miguel A. & Marcano, Mariano & Fletcher, Robert J., 2012. "A diffusive logistic growth model to describe forest recovery," Ecological Modelling, Elsevier, vol. 244(C), pages 13-19.
    15. Brandão, Frederico & Befani, Barbara & Soares-Filho, Jaílson & Rajão, Raoni & Garcia, Edenise, 2023. "How to halt deforestation in the Amazon? A Bayesian process-tracing approach," Land Use Policy, Elsevier, vol. 133(C).
    16. Wickramasuriya, Rohan Chandralal & Bregt, Arnold K. & van Delden, Hedwig & Hagen-Zanker, Alex, 2009. "The dynamics of shifting cultivation captured in an extended Constrained Cellular Automata land use model," Ecological Modelling, Elsevier, vol. 220(18), pages 2302-2309.
    17. Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    18. Ismail Ercument Ayazli, 2019. "Monitoring of Urban Growth with Improved Model Accuracy by Statistical Methods," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    19. Shimada, Hideki, 2020. "Do monetary rewards for spatial coordination enhance participation in a forest incentive program?," Ecological Economics, Elsevier, vol. 177(C).
    20. Pereira, Alexia Saleme Aona de Paula & dos Santos, Vitor Juste & Alves, Sabrina do Carmo & Amaral e Silva, Arthur & da Silva, Charles Gomes & Calijuri, Maria Lúcia, 2022. "Contribution of rural settlements to the deforestation dynamics in the Legal Amazon," Land Use Policy, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:344:y:2017:i:c:p:73-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.