IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v332y2016icp1-7.html
   My bibliography  Save this article

Interspecific interaction strength influences population density more than carrying capacity in more complex ecological networks

Author

Listed:
  • Yan, Chuan
  • Zhang, Zhibin

Abstract

Understanding the mechanisms determining population density of species in communities and ecological networks is an important task in ecological studies. Interactions and carrying capacity largely determine population density of species and then community structure. However, their impacts on population density have not been fully investigated in ecological networks. In this study, we examined the associations of interspecific interaction strength and carrying capacity with population density in three kinds of theoretical and empirical ecological networks with different complexity. We firstly demonstrated both the net direct and indirect interaction strength of a species received from the other species showed positive associations with population density of the species in all ecological networks (except for in predation networks), particularly in more complex ecological networks. Direct interaction was more important than indirect interaction in determining population density. Carrying capacity showed a positive association with population density, particularly in less complex ecological networks. Our results suggest that interspecific interaction strength is more important than carrying capacity in determining species dominance in more complex networks.

Suggested Citation

  • Yan, Chuan & Zhang, Zhibin, 2016. "Interspecific interaction strength influences population density more than carrying capacity in more complex ecological networks," Ecological Modelling, Elsevier, vol. 332(C), pages 1-7.
  • Handle: RePEc:eee:ecomod:v:332:y:2016:i:c:p:1-7
    DOI: 10.1016/j.ecolmodel.2016.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    2. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    3. Stefano Allesina & Si Tang, 2012. "Stability criteria for complex ecosystems," Nature, Nature, vol. 483(7388), pages 205-208, March.
    4. Robert B. McKane & Loretta C. Johnson & Gaius R. Shaver & Knute J. Nadelhoffer & Edward B. Rastetter & Brian Fry & Anne E. Giblin & Knut Kielland & Bonnie L. Kwiatkowski & James A. Laundre & Georgia M, 2002. "Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra," Nature, Nature, vol. 415(6867), pages 68-71, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    2. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    4. Zhang, Zhibin & Yan, Chuan & Krebs, Charles J. & Stenseth, Nils Chr., 2015. "Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems," Ecological Modelling, Elsevier, vol. 312(C), pages 374-384.
    5. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. González, Cecilia, 2023. "Evolution of the concept of ecological integrity and its study through networks," Ecological Modelling, Elsevier, vol. 476(C).
    7. Clenet, Maxime & El Ferchichi, Hafedh & Najim, Jamal, 2022. "Equilibrium in a large Lotka–Volterra system with pairwise correlated interactions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 423-444.
    8. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    9. Bastazini, Vinicius Augusto Galvão & Debastiani, Vanderlei & Cappelatti, Laura & Guimarães, Paulo & Pillar, Valério D., 2022. "The role of evolutionary modes for trait-based cascades in mutualistic networks," Ecological Modelling, Elsevier, vol. 470(C).
    10. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    11. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    12. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    13. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    14. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    16. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    17. Cropp, Roger & Norbury, John, 2018. "Linking obligate mutualism models in an extended consumer-resource framework," Ecological Modelling, Elsevier, vol. 374(C), pages 1-13.
    18. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.
    19. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    20. Lischke, Heike & Löffler, Thomas J., 2017. "Finding all multiple stable fixpoints of n-species Lotka–Volterra competition models," Theoretical Population Biology, Elsevier, vol. 115(C), pages 24-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:332:y:2016:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.