IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6867d10.1038_415068a.html
   My bibliography  Save this article

Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra

Author

Listed:
  • Robert B. McKane

    (US Environmental Protection Agency)

  • Loretta C. Johnson

    (Kansas State University)

  • Gaius R. Shaver

    (The Ecosystems Center, Marine Biological Laboratory)

  • Knute J. Nadelhoffer

    (The Ecosystems Center, Marine Biological Laboratory)

  • Edward B. Rastetter

    (The Ecosystems Center, Marine Biological Laboratory)

  • Brian Fry

    (Institute of Pacific Islands Forestry, USDA Forest Service)

  • Anne E. Giblin

    (The Ecosystems Center, Marine Biological Laboratory)

  • Knut Kielland

    (Institute of Arctic Biology, University of Alaska)

  • Bonnie L. Kwiatkowski

    (The Ecosystems Center, Marine Biological Laboratory)

  • James A. Laundre

    (The Ecosystems Center, Marine Biological Laboratory)

  • Georgia Murray

    (Appalachian Mountain Club)

Abstract

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition1,2. Although resource partitioning is an important determinant of species diversity and composition in animal communities3, its importance in structuring plant communities has been difficult to resolve4. This is due mainly to difficulties in studying how plants compete for belowground resources5. Here we provide evidence from a 15N-tracer field experiment showing that plant species in a nitrogen-limited, arctic tundra community were differentiated in timing, depth and chemical form of nitrogen uptake, and that species dominance was strongly correlated with uptake of the most available soil nitrogen forms. That is, the most productive species used the most abundant nitrogen forms, and less productive species used less abundant forms. To our knowledge, this is the first documentation that the composition of a plant community is related to partitioning of differentially available forms of a single limiting resource.

Suggested Citation

  • Robert B. McKane & Loretta C. Johnson & Gaius R. Shaver & Knute J. Nadelhoffer & Edward B. Rastetter & Brian Fry & Anne E. Giblin & Knut Kielland & Bonnie L. Kwiatkowski & James A. Laundre & Georgia M, 2002. "Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra," Nature, Nature, vol. 415(6867), pages 68-71, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415068a
    DOI: 10.1038/415068a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415068a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415068a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Chen Hu & Xue-Yan Liu & Avery W. Driscoll & Yuan-Wen Kuang & E. N. Jack Brookshire & Xiao-Tao Lü & Chong-Juan Chen & Wei Song & Rong Mao & Cong-Qiang Liu & Benjamin Z. Houlton, 2024. "Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yan, Chuan & Zhang, Zhibin, 2016. "Interspecific interaction strength influences population density more than carrying capacity in more complex ecological networks," Ecological Modelling, Elsevier, vol. 332(C), pages 1-7.
    3. Heikkinen, Juha & Mäkipää, Raisa, 2010. "Testing hypotheses on shape and distribution of ecological response curves," Ecological Modelling, Elsevier, vol. 221(3), pages 388-399.
    4. Samuel E. Wuest & Lukas Schulz & Surbhi Rana & Julia Frommelt & Merten Ehmig & Nuno D. Pires & Ueli Grossniklaus & Christian S. Hardtke & Ulrich Z. Hammes & Bernhard Schmid & Pascal A. Niklaus, 2023. "Single-gene resolution of diversity-driven overyielding in plant genotype mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ya-Huang Luo & Jie Liu & Shao-Lin Tan & Marc William Cadotte & Yue-Hua Wang & Kun Xu & De-Zhu Li & Lian-Ming Gao, 2016. "Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-20, May.
    6. van Wijk, M.T., 2007. "Predicting ecosystem functioning from plant traits: Results from a multi-scale ecophysiological modeling approach," Ecological Modelling, Elsevier, vol. 203(3), pages 453-463.
    7. Brenton Ladd, 2016. "Nitrogen Pollution and the Meltdown of Urban Ecosystems," Land, MDPI, vol. 5(3), pages 1-8, July.
    8. Hu, M.H. & Ao, Y.S. & Yang, X.E. & Li, T.Q., 2008. "Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system," Agricultural Water Management, Elsevier, vol. 95(5), pages 607-615, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6867:d:10.1038_415068a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.