IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v290y2014icp65-75.html
   My bibliography  Save this article

A modeling approach to determine the importance of dynamic regulation of plant hydraulic conductivities on the water uptake dynamics in the soil-plant-atmosphere system

Author

Listed:
  • Lobet, Guillaume
  • Pagès, Loïc
  • Draye, Xavier

Abstract

We present here a new model, PlaNet-Maize, with the purpose of investigating the effect of environmental and endogenous factors on the growth and water relations of the maize plant. This functional–structural plant model (FSPM) encompasses the entire soil-plant-atmosphere continuum with a sub-organ resolution. The model simulates the growth and development of an individual maize plant and the flux of water through the plant structure, from the rhizosphere to the leaf boundary layer. Leaf stomatal conductance and root radial and axial conductivities are considered as functions of local water potential. Finally, a simple carbon allocation rule is included in the model to allow the feedback effect of water deficit on plant growth. The model was successfully used to reproduce experimental plant hydraulic behavior in response to water deficit. The quantitative contribution of leaf conductance and root conductivities were assessed individually and in combination.

Suggested Citation

  • Lobet, Guillaume & Pagès, Loïc & Draye, Xavier, 2014. "A modeling approach to determine the importance of dynamic regulation of plant hydraulic conductivities on the water uptake dynamics in the soil-plant-atmosphere system," Ecological Modelling, Elsevier, vol. 290(C), pages 65-75.
  • Handle: RePEc:eee:ecomod:v:290:y:2014:i:c:p:65-75
    DOI: 10.1016/j.ecolmodel.2013.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    2. Diggle, A.J, 1988. "Rootmap: a root growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 30(1), pages 175-180.
    3. Drouet, Jean-Louis & Pagès, Loïc, 2007. "GRAAL-CN: A model of GRowth, Architecture and ALlocation for Carbon and Nitrogen dynamics within whole plants formalised at the organ level," Ecological Modelling, Elsevier, vol. 206(3), pages 231-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    2. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    3. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    4. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    6. Zhou, Qingyun & Kang, Shaozhong & Li, Fusheng & Zhang, Lu, 2008. "Comparison of dynamic and static APRI-models to simulate soil water dynamics in a vineyard over the growing season under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 767-775, July.
    7. Asres, Sisay B., 2016. "Evaluating and enhancing irrigation water management in the upper Blue Nile basin, Ethiopia: The case of Koga large scale irrigation scheme," Agricultural Water Management, Elsevier, vol. 170(C), pages 26-35.
    8. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    9. Kaman, Harun & Kirda, Cevat & Sesveren, Sertan, 2011. "Genotypic differences of maize in grain yield response to deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 801-807, March.
    10. Webber, H.A. & Madramootoo, C.A. & Bourgault, M. & Horst, M.G. & Stulina, G. & Smith, D.L., 2006. "Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation," Agricultural Water Management, Elsevier, vol. 86(3), pages 259-268, December.
    11. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    13. Xiao, Yu & Zhang, Jing & Jia, Ting Ting & Pang, Xiao Pan & Guo, Zheng Gang, 2015. "Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa)," Agricultural Water Management, Elsevier, vol. 161(C), pages 147-154.
    14. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    15. A. Yazar & F. Gökçel & M.S. Sezen, 2009. "Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(11), pages 494-503.
    16. Sharma, Harmandeep & Shukla, Manoj K. & Bosland, Paul W. & Steiner, Robert, 2017. "Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers," Agricultural Water Management, Elsevier, vol. 179(C), pages 81-91.
    17. Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.
    18. Tomlinson, Kyle W. & Dominy, James G. & Hearne, John W. & O’Connor, Timothy G., 2007. "A functional-structural model for growth of clonal bunchgrasses," Ecological Modelling, Elsevier, vol. 202(3), pages 243-264.
    19. Abel Saldivia-Tejeda & Simon Fonteyne & Taiyu Guan & Nele Verhulst, 2021. "Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico," Agriculture, MDPI, vol. 11(10), pages 1-12, September.
    20. Brinegar, Hilary R. & Ward, Frank A., 2009. "Basin impacts of irrigation water conservation policy," Ecological Economics, Elsevier, vol. 69(2), pages 414-426, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:290:y:2014:i:c:p:65-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.