IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v280y2014icp18-29.html
   My bibliography  Save this article

Coupling different mechanistic effect models for capturing individual- and population-level effects of chemicals: Lessons from a case where standard risk assessment failed

Author

Listed:
  • Gabsi, Faten
  • Hammers-Wirtz, Monika
  • Grimm, Volker
  • Schäffer, Andreas
  • Preuss, Thomas G.

Abstract

Current environmental risk assessment (ERA) of chemicals for aquatic invertebrates relies on standardized laboratory tests in which toxicity effects on individual survival, growth and reproduction are measured. Such tests determine the threshold concentration of a chemical below which no population-level effects are expected. How well this procedure captures effects on individuals and populations, however, remains an open question. Here we used mechanistic effect models, combining individual-level reproduction and survival models with an individual-based population model (IBM), to understand the individuals’ responses and extrapolate them to the population level. We used a toxicant (Dispersogen A) for which adverse effects on laboratory populations were detected at the determined threshold concentration and thus challenged the conservatism of the current risk assessment method. Multiple toxicity effects on reproduction and survival were reported, in addition to effects on the F1 generation. We extrapolated commonly tested individual toxicity endpoints, reproduction and survival, to the population level using the IBM. Effects on reproduction were described via regression models. To select the most appropriate survival model, the IBM was run assuming either stochastic death (SD) or individual tolerance (IT). Simulations were run for different scenarios regarding the toxicant's effects: survival toxicity, reproductive toxicity, or survival and reproductive toxicity. As population-level endpoints, we used population size and structure and extinction risk. We found that survival represented as SD explained population dynamics better than IT. Integrating toxicity effects on both reproduction and survival yielded more accurate predictions of population effects than considering isolated effects. To fully capture population effects observed at high toxicant concentrations, toxicity effects transmitted to the F1 generation had to be integrated. Predicted extinction risk was highly sensitive to the assumptions about individual-level effects. Our results demonstrate that the endpoints used in current standard tests may not be sufficient for assessing the risk of adverse effects on populations. A combination of laboratory population experiments with mechanistic effect models is a powerful tool to better understand and predict effects on both individuals and populations. Mechanistic effect modelling thus holds great potential to improve the accuracy of ERA of chemicals in the future.

Suggested Citation

  • Gabsi, Faten & Hammers-Wirtz, Monika & Grimm, Volker & Schäffer, Andreas & Preuss, Thomas G., 2014. "Coupling different mechanistic effect models for capturing individual- and population-level effects of chemicals: Lessons from a case where standard risk assessment failed," Ecological Modelling, Elsevier, vol. 280(C), pages 18-29.
  • Handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:18-29
    DOI: 10.1016/j.ecolmodel.2013.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013003025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Preuss, Thomas Günter & Hammers-Wirtz, Monika & Hommen, Udo & Rubach, Mascha Nadine & Ratte, Hans Toni, 2009. "Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics," Ecological Modelling, Elsevier, vol. 220(3), pages 310-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Ottermanns & Kerstin Szonn & Thomas G Preuß & Martina Roß-Nickoll, 2014. "Non-Linear Analysis Indicates Chaotic Dynamics and Reduced Resilience in Model-Based Daphnia Populations Exposed to Environmental Stress," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    3. Li, Yan & Blazer, Vicki S. & Iwanowicz, Luke R. & Schall, Megan Kepler & Smalling, Kelly & Tillitt, Donald E. & Wagner, Tyler, 2020. "Ecological risk assessment of environmental stress and bioactive chemicals to riverine fish populations: An individual-based model of smallmouth bass Micropterus dolomieu✰," Ecological Modelling, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    2. Strauss, Tido & Gabsi, Faten & Hammers-Wirtz, Monika & Thorbek, Pernille & Preuss, Thomas G., 2017. "The power of hybrid modelling: An example from aquatic ecosystems," Ecological Modelling, Elsevier, vol. 364(C), pages 77-88.
    3. Gergs, André & Ratte, Hans Toni, 2009. "Predicting functional response and size selectivity of juvenile Notonecta maculata foraging on Daphnia magna," Ecological Modelling, Elsevier, vol. 220(23), pages 3331-3341.
    4. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    5. Liu, Chun & Bednarska, Agnieszka J. & Sibly, Richard M. & Murfitt, Roger C. & Edwards, Peter & Thorbek, Pernille, 2014. "Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse," Ecological Modelling, Elsevier, vol. 280(C), pages 30-39.
    6. Šajna, Nina & Kušar, Primož, 2014. "Modeling species fitness in competitive environments," Ecological Modelling, Elsevier, vol. 275(C), pages 31-36.
    7. Hazlerigg, Charles R.E. & Tyler, Charles R. & Lorenzen, Kai & Wheeler, James R. & Thorbek, Pernille, 2014. "Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model," Ecological Modelling, Elsevier, vol. 280(C), pages 76-88.
    8. Palamara, Gian Marco & Dennis, Stuart R. & Haenggi, Corinne & Schuwirth, Nele & Reichert, Peter, 2022. "Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model," Ecological Modelling, Elsevier, vol. 472(C).
    9. Strauss, Tido & Kulkarni, Devdutt & Preuss, Thomas G. & Hammers-Wirtz, Monika, 2016. "The secret lives of cannibals: Modelling density-dependent processes that regulate population dynamics in Chaoborus crystallinus," Ecological Modelling, Elsevier, vol. 321(C), pages 84-97.
    10. Erickson, Richard A. & Cox, Stephen B. & Oates, Jessica L. & Anderson, Todd A. & Salice, Christopher J. & Long, Kevin R., 2014. "A Daphnia population model that considers pesticide exposure and demographic stochasticity," Ecological Modelling, Elsevier, vol. 275(C), pages 37-47.
    11. Richard Ottermanns & Kerstin Szonn & Thomas G Preuß & Martina Roß-Nickoll, 2014. "Non-Linear Analysis Indicates Chaotic Dynamics and Reduced Resilience in Model-Based Daphnia Populations Exposed to Environmental Stress," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:18-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.