IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v279y2014icp100-113.html
   My bibliography  Save this article

ForestMAS – A single tree based secondary succession model employing Ellenberg indicator values

Author

Listed:
  • Kolmanič, Simon
  • Guid, Nikola
  • Diaci, Jurij

Abstract

Over recent decades farmland abandonment has affected large areas of the landscape. To better predict the changes associated with this process, we developed a secondary succession model based on Ellenberg indicator values describing the ecological niche of a tree along environmental gradients. These values are compared with local ecological factors dependent on terrain conditions. The terrain is represented by a Digital Terrain Model, where the local conditions are represented by a light availability model, climate data, soil properties, and a combination of a water flow model and average annual rainfall data. Each tree in our model is associated with its immediate circular ecological neighbourhood and is treated individually from the seedling stage through to its decay. Each year, tree heights, actual vigour, and neighbourhood radii were calculated. When two radii intersected, the vigour of both trees was compared. The weaker of the two became dominated, leading to stress-related mortality. When a tree reached the adult stage, it produced seeds that established new seedlings that competed for light and nutrition. To start the simulation, the initial amount of seed was planted on bare ground. It was possible to monitor the succession phases either visually or statistically. 3D tree models were used to visualize a tree at any age, generating realistic landscape images useful for demonstrating long-term changes in the cultural landscape to non-experts. The results were compared with those from previous field studies in various areas of Slovenia. Apart from predicting landscape changes after farmland abandonment, the model can be used for forecasting the regeneration process after clearcutting or natural disasters.

Suggested Citation

  • Kolmanič, Simon & Guid, Nikola & Diaci, Jurij, 2014. "ForestMAS – A single tree based secondary succession model employing Ellenberg indicator values," Ecological Modelling, Elsevier, vol. 279(C), pages 100-113.
  • Handle: RePEc:eee:ecomod:v:279:y:2014:i:c:p:100-113
    DOI: 10.1016/j.ecolmodel.2014.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001400101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sagnard, Fabrice & Pichot, Christian & Dreyfus, Philippe & Jordano, Pedro & Fady, Bruno, 2007. "Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest," Ecological Modelling, Elsevier, vol. 203(3), pages 464-474.
    2. Hruška, J. & Oulehle, F. & Šamonil, P. & Šebesta, J. & Tahovská, K. & Hleb, R. & Houška, J. & Šikl, J., 2012. "Long-term forest soil acidification, nutrient leaching and vegetation development: Linking modelling and surveys of a primeval spruce forest in the Ukrainian Transcarpathian Mts," Ecological Modelling, Elsevier, vol. 244(C), pages 28-37.
    3. Lagergren, Fredrik & Jönsson, Anna Maria & Blennow, Kristina & Smith, Benjamin, 2012. "Implementing storm damage in a dynamic vegetation model for regional applications in Sweden," Ecological Modelling, Elsevier, vol. 247(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergkvist, John & Lagergren, Fredrik & Linderson, Maj-Lena Finnander & Miller, Paul & Lindeskog, Mats & Jönsson, Anna Maria, 2023. "Modelling managed forest ecosystems in Sweden: An evaluation from the stand to the regional scale," Ecological Modelling, Elsevier, vol. 477(C).
    2. Somerville, Gayle. J. & Melander, Bo & Kudsk, Per & Mathiassen, Solvejg K, 2019. "Modelling annual grass weed seed dispersal in winter wheat, when influenced by hedges and directional wind," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    3. Maximilian Axer & Robert Schlicht & Rico Kronenberg & Sven Wagner, 2021. "The Potential for Future Shifts in Tree Species Distribution Provided by Dispersal and Ecological Niches: A Comparison between Beech and Oak in Europe," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    4. Manso, Rubén & Pardos, Marta & Keyes, Christopher R. & Calama, Rafael, 2012. "Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain)," Ecological Modelling, Elsevier, vol. 226(C), pages 11-21.
    5. Adam Pártl & David Vačkář & Blanka Loučková & Eliška Krkoška Lorencová, 2017. "A spatial analysis of integrated risk: vulnerability of ecosystem services provisioning to different hazards in the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1185-1204, December.
    6. Wallentin, Gudrun & Tappeiner, Ulrike & Strobl, Josef & Tasser, Erich, 2008. "Understanding alpine tree line dynamics: An individual-based model," Ecological Modelling, Elsevier, vol. 218(3), pages 235-246.
    7. Lagergren, Fredrik & Jönsson, Anna Maria, 2017. "Ecosystem model analysis of multi-use forestry in a changing climate," Ecosystem Services, Elsevier, vol. 26(PA), pages 209-224.
    8. Anna Jönsson & Fredrik Lagergren & Benjamin Smith, 2015. "Forest management facing climate change - an ecosystem model analysis of adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 201-220, February.
    9. Jönsson, Anna Maria & Lagergren, Fredrik, 2018. "Effects of climate and soil conditions on the productivity and defence capacity of Picea abies in Sweden—An ecosystem model assessment," Ecological Modelling, Elsevier, vol. 384(C), pages 154-167.
    10. Nanos, Nikos & Larson, Kajsa & Millerón, Matias & Sjöstedt-de Luna, Sara, 2010. "Inverse modeling for effective dispersal: Do we need tree size to estimate fecundity?," Ecological Modelling, Elsevier, vol. 221(20), pages 2415-2424.
    11. Mateusz Malarczyk & Seiichiro Katsura & Marcin Kaminski & Krzysztof Szabat, 2024. "A Novel Meta-Heuristic Algorithm Based on Birch Succession in the Optimization of an Electric Drive with a Flexible Shaft," Energies, MDPI, vol. 17(16), pages 1-34, August.
    12. Blanco, Victor & Holzhauer, Sascha & Brown, Calum & Lagergren, Fredrik & Vulturius, Gregor & Lindeskog, Mats & Rounsevell, Mark D.A., 2017. "The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden," Ecosystem Services, Elsevier, vol. 23(C), pages 174-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:279:y:2014:i:c:p:100-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.