IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v226y2012icp11-21.html
   My bibliography  Save this article

Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain)

Author

Listed:
  • Manso, Rubén
  • Pardos, Marta
  • Keyes, Christopher R.
  • Calama, Rafael

Abstract

Natural regeneration in stone pine (Pinus pinea L.) managed forests in the Spanish Northern Plateau is not achieved successfully under current silviculture practices, constituting a main concern for forest managers. We modelled spatio-temporal features of primary dispersal to test whether (a) present low stand densities constrain natural regeneration success and (b) seed release is a climate-controlled process. The present study is based on data collected from a 6 years seed trap experiment considering different regeneration felling intensities. From a spatial perspective, we attempted alternate established kernels under different data distribution assumptions to fit a spatial model able to predict P. pinea seed rain. Due to P. pinea umbrella-like crown, models were adapted to account for crown effect through correction of distances between potential seed arrival locations and seed sources. In addition, individual tree fecundity was assessed independently from existing models, improving parameter estimation stability. Seed rain simulation enabled to calculate seed dispersal indexes for diverse silvicultural regeneration treatments. The selected spatial model of best fit (Weibull, Poisson assumption) predicted a highly clumped dispersal pattern that resulted in a proportion of gaps where no seed arrival is expected (dispersal limitation) between 0.25 and 0.30 for intermediate intensity regeneration fellings and over 0.50 for intense fellings. To describe the temporal pattern, the proportion of seeds released during monthly intervals was modelled as a function of climate variables – rainfall events – through a linear model that considered temporal autocorrelation, whereas cone opening took place over a temperature threshold. Our findings suggest the application of less intensive regeneration fellings, to be carried out after years of successful seedling establishment and, seasonally, subsequent to the main rainfall period (late fall). This schedule would avoid dispersal limitation and would allow for a complete seed release. These modifications in present silviculture practices would produce a more efficient seed shadow in managed stands.

Suggested Citation

  • Manso, Rubén & Pardos, Marta & Keyes, Christopher R. & Calama, Rafael, 2012. "Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain)," Ecological Modelling, Elsevier, vol. 226(C), pages 11-21.
  • Handle: RePEc:eee:ecomod:v:226:y:2012:i:c:p:11-21
    DOI: 10.1016/j.ecolmodel.2011.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011005709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colin Dawson & Julian F. V. Vincent & Anne-Marie Rocca, 1997. "How pine cones open," Nature, Nature, vol. 390(6661), pages 668-668, December.
    2. Calama, Rafael & Mutke, Sven & Tomé, José & Gordo, Javier & Montero, Gregorio & Tomé, Margarida, 2011. "Modelling spatial and temporal variability in a zero-inflated variable: The case of stone pine (Pinus pinea L.) cone production," Ecological Modelling, Elsevier, vol. 222(3), pages 606-618.
    3. Ran Nathan & Gabriel G. Katul & Henry S. Horn & Suvi M. Thomas & Ram Oren & Roni Avissar & Stephen W. Pacala & Simon A. Levin, 2002. "Mechanisms of long-distance dispersal of seeds by wind," Nature, Nature, vol. 418(6896), pages 409-413, July.
    4. Nanos, Nikos & Larson, Kajsa & Millerón, Matias & Sjöstedt-de Luna, Sara, 2010. "Inverse modeling for effective dispersal: Do we need tree size to estimate fecundity?," Ecological Modelling, Elsevier, vol. 221(20), pages 2415-2424.
    5. Sagnard, Fabrice & Pichot, Christian & Dreyfus, Philippe & Jordano, Pedro & Fady, Bruno, 2007. "Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest," Ecological Modelling, Elsevier, vol. 203(3), pages 464-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmström, Emma & Karlsson, Matts & Nilsson, Urban, 2017. "Modeling birch seed supply and seedling establishment during forest regeneration," Ecological Modelling, Elsevier, vol. 352(C), pages 31-39.
    2. Calama, Rafael & Puértolas, Jaime & Madrigal, Guillermo & Pardos, Marta, 2013. "Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration," Ecological Modelling, Elsevier, vol. 251(C), pages 9-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wallentin, Gudrun & Tappeiner, Ulrike & Strobl, Josef & Tasser, Erich, 2008. "Understanding alpine tree line dynamics: An individual-based model," Ecological Modelling, Elsevier, vol. 218(3), pages 235-246.
    2. Christopher Costello & Nicolas Querou & Agnès Tomini, 2014. "Spatial concessions with limited tenure," Post-Print hal-01123392, HAL.
    3. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Somerville, Gayle. J. & Melander, Bo & Kudsk, Per & Mathiassen, Solvejg K, 2019. "Modelling annual grass weed seed dispersal in winter wheat, when influenced by hedges and directional wind," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    5. Carré, Aurélien & Gasnier, Pierre & Roux, Émile & Tabourot, Laurent, 2022. "Extending the operating limits and performances of centimetre-scale wind turbines through biomimicry," Applied Energy, Elsevier, vol. 326(C).
    6. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    7. Maximilian Axer & Robert Schlicht & Rico Kronenberg & Sven Wagner, 2021. "The Potential for Future Shifts in Tree Species Distribution Provided by Dispersal and Ecological Niches: A Comparison between Beech and Oak in Europe," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    8. Enock O. Menge & Michael J. Lawes, 2023. "Influence of Landscape Characteristics on Wind Dispersal Efficiency of Calotropis procera," Land, MDPI, vol. 12(3), pages 1-25, February.
    9. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.
    10. Quérou, Nicolas & Tomini, Agnes & Costello, Christopher, 2022. "Limited‐tenure concessions for collective goods," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    11. Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
    12. Trakhtenbrot, A. & Katul, G.G. & Nathan, R., 2014. "Mechanistic modeling of seed dispersal by wind over hilly terrain," Ecological Modelling, Elsevier, vol. 274(C), pages 29-40.
    13. Junhao Zhang & Xinjun Wang & Yujing Xie, 2021. "Implication of Buffer Zones Delineation Considering the Landscape Connectivity and Influencing Patch Structural Factors in Nature Reserves," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    14. Mercè Guàrdia & Anna Teixidó & Rut Sanchez-Bragado & Neus Aletà, 2021. "An Agronomic Approach to Pine Nut Production by Grafting Stone Pine on Two Rootstocks," Agriculture, MDPI, vol. 11(11), pages 1-12, October.
    15. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    16. Strona, Giovanni, 2015. "A spatially explicit model to investigate how dispersal/colonization tradeoffs between short and long distance movement strategies affect species ranges," Ecological Modelling, Elsevier, vol. 297(C), pages 80-85.
    17. Horn, S. & Raabe, A. & Will, H. & Tackenberg, O., 2012. "TurbSeed—A model for wind dispersal of seeds in turbulent currents based on publicly available climate data," Ecological Modelling, Elsevier, vol. 237, pages 1-10.
    18. Kuparinen, Anna & Schurr, Frank M., 2007. "A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: Application to gene flow from transgenic forests," Ecological Modelling, Elsevier, vol. 202(3), pages 476-486.
    19. Huber, P. & Hujala, T. & Kurttila, M. & Wolfslehner, B. & Vacik, H., 2019. "Application of multi criteria analysis methods for a participatory assessment of non-wood forest products in two European case studies," Forest Policy and Economics, Elsevier, vol. 103(C), pages 103-111.
    20. Le Maitre, David C. & Krug, Rainer M. & Hoffmann, John H. & Gordon, Anthony J. & Mgidi, Theresa N., 2008. "Hakea sericea: Development of a model of the impacts of biological control on population dynamics and rates of spread of an invasive species," Ecological Modelling, Elsevier, vol. 212(3), pages 342-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:226:y:2012:i:c:p:11-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.