IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v272y2014icp129-140.html
   My bibliography  Save this article

Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants

Author

Listed:
  • Cord, Anna F.
  • Klein, Doris
  • Mora, Franz
  • Dech, Stefan

Abstract

Given the rapid loss of biodiversity worldwide and the resulting impacts on ecosystem functions and services, we more than ever rely on current and spatially continuous assessments of species distributions for biodiversity conservation and sustainable land management. Over the last decade, the usefulness of categorical land cover data to account for the human-induced degradation, transformation and loss of natural habitat in species distribution models (SDMs) has been questioned and the number of studies directly analyzing remotely sensed variables has lately multiplied. While several assumptions support the advantages of remote sensing data, an empirical comparison is still lacking. The objective of this study was to bridge this gap and compare the suitability of an existing categorical land cover classification and of continuous remote sensing variables for modeling the distribution patterns of 30 Mexican tree species. We applied the Maximum Entropy algorithm to predict species distributions based on both data types independently, quantified model performance and analyzed species–land cover relationships in detail. As part of this comparison, we focused on two particular aspects, namely the effects of (1) thematic detail and (2) spatial resolution of the land cover data on model performance. Our analysis revealed that remote sensing data were significantly better model predictors and that the main obstacle of the land cover-based SDMs were their bolder predictions, together with their overall overestimation of suitability. Among the land cover-based models, we found that thematic detail was more important than spatial resolution for SDM performance. However, our results also suggest that the suitability of land cover data differs largely among species and is dependent on their habitat distinctiveness. Our findings have relevant implications for future species distribution modeling studies which aim at complementing their set of topo-climatic predictors by data on land surface characteristics.

Suggested Citation

  • Cord, Anna F. & Klein, Doris & Mora, Franz & Dech, Stefan, 2014. "Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants," Ecological Modelling, Elsevier, vol. 272(C), pages 129-140.
  • Handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:129-140
    DOI: 10.1016/j.ecolmodel.2013.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prates-Clark, Cássia Da Conceição & Saatchi, Sassan S. & Agosti, Donat, 2008. "Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data," Ecological Modelling, Elsevier, vol. 211(3), pages 309-323.
    2. David J. Rogers & Sarah E. Randolph & Robert W. Snow & Simon I. Hay, 2002. "Satellite imagery in the study and forecast of malaria," Nature, Nature, vol. 415(6872), pages 710-715, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wajid Rashid & Jianbin Shi & Inam ur Rahim & Muhammad Qasim & Muhammad Naveed Baloch & Eve Bohnett & Fangyuan Yang & Imran Khan & Bilal Ahmad, 2021. "Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    2. Salvador Arenas-Castro & João Gonçalves & Paulo Alves & Domingo Alcaraz-Segura & João P Honrado, 2018. "Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradley, Bethany A. & Olsson, Aaryn D. & Wang, Ophelia & Dickson, Brett G. & Pelech, Lori & Sesnie, Steven E. & Zachmann, Luke J., 2012. "Species detection vs. habitat suitability: Are we biasing habitat suitability models with remotely sensed data?," Ecological Modelling, Elsevier, vol. 244(C), pages 57-64.
    2. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    3. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    4. Paulina Phoobane & Muthoni Masinde & Tafadzwanashe Mabhaudhi, 2022. "Predicting Infectious Diseases: A Bibliometric Review on Africa," IJERPH, MDPI, vol. 19(3), pages 1-20, February.
    5. Nicholas A S Hamm & Ricardo J Soares Magalhães & Archie C A Clements, 2015. "Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(12), pages 1-24, December.
    6. Zhoupeng Ren & Duoquan Wang & Jimee Hwang & Adam Bennett & Hugh J W Sturrock & Aimin Ma & Jixia Huang & Zhigui Xia & Xinyu Feng & Jinfeng Wang, 2015. "Spatial-Temporal Variation and Primary Ecological Drivers of Anopheles sinensis Human Biting Rates in Malaria Epidemic-Prone Regions of China," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-17, January.
    7. Xavier Rodó & Mercedes Pascual & Francisco Doblas-Reyes & Alexander Gershunov & Dáithí Stone & Filippo Giorgi & Peter Hudson & James Kinter & Miquel-Àngel Rodríguez-Arias & Nils Stenseth & David Alons, 2013. "Climate change and infectious diseases: Can we meet the needs for better prediction?," Climatic Change, Springer, vol. 118(3), pages 625-640, June.
    8. Luong Thi Nguyen & Huy Xuan Le & Dong Thanh Nguyen & Ha Quang Ho & Ting-Wu Chuang, 2020. "Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    9. Jörn P W Scharlemann & David Benz & Simon I Hay & Bethan V Purse & Andrew J Tatem & G R William Wint & David J Rogers, 2008. "Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-13, January.
    10. Chathurika Hettiarachchige & Stefan von Cavallar & Timothy Lynar & Roslyn I Hickson & Manoj Gambhir, 2018. "Risk prediction system for dengue transmission based on high resolution weather data," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    11. Gilioli, G. & Groppi, M. & Vesperoni, M.P. & Baumgärtner, J. & Gutierrez, A.P., 2009. "An epidemiological model of East Coast Fever in African livestock," Ecological Modelling, Elsevier, vol. 220(13), pages 1652-1662.
    12. Ting-Wu Chuang & Michael C Wimberly, 2012. "Remote Sensing of Climatic Anomalies and West Nile Virus Incidence in the Northern Great Plains of the United States," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
    13. Daniel C Medina & Sally E Findley & Boubacar Guindo & Seydou Doumbia, 2007. "Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:129-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.