IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0071574.html
   My bibliography  Save this article

Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa

Author

Listed:
  • Hannah Slater
  • Edwin Michael

Abstract

There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account for the effects of future climate change on parasitic infection.

Suggested Citation

  • Hannah Slater & Edwin Michael, 2013. "Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0071574
    DOI: 10.1371/journal.pone.0071574
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071574
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071574&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0071574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bosello, Francesco & Roson, Roberto & Tol, Richard S.J., 2006. "Economy-wide estimates of the implications of climate change: Human health," Ecological Economics, Elsevier, vol. 58(3), pages 579-591, June.
    2. Francesco Bosello & Andrea Bigano & Roberto Roson & Richard S.J. Tol, 2006. "Economy-Wide Estimates of the Implications of Climate Change: A Joint Analysis for Sea Level Rise and Tourism," Working Papers 2006.135, Fondazione Eni Enrico Mattei.
    3. Edwin Michael & Mwele N Malecela & Mihail Zervos & James W Kazura, 2008. "Global Eradication of Lymphatic Filariasis: The Value of Chronic Disease Control in Parasite Elimination Programmes," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-9, August.
    4. Tol, Richard S.J. & Ebi, Kristie L. & Yohe, Gary W., 2007. "Infectious disease, development, and climate change: a scenario analysis," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 687-706, October.
    5. Hao Zhang, 2002. "On Estimation and Prediction for Spatial Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(1), pages 129-136, March.
    6. David J. Rogers & Sarah E. Randolph & Robert W. Snow & Simon I. Hay, 2002. "Satellite imagery in the study and forecast of malaria," Nature, Nature, vol. 415(6872), pages 710-715, February.
    7. Nicola A Wardrop & Peter M Atkinson & Peter W Gething & Eric M Fèvre & Kim Picozzi & Abbas S L Kakembo & Susan C Welburn, 2010. "Bayesian Geostatistical Analysis and Prediction of Rhodesian Human African Trypanosomiasis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Kam Ki & Petrie, Dennis & Rao, D.S. Prasada, 2009. "The income-climate trap of health development: A comparative analysis of African and Non-African countries," Social Science & Medicine, Elsevier, vol. 69(7), pages 1099-1106, October.
    2. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    3. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    4. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    6. Bosello, Francesco & Orecchia, Carlo & Parrado, Ramiro, 2013. "The additional contribution of non-CO2 mitigation in climate policy costs and efforts in Europe," Conference papers 332363, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    8. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    9. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    10. Boureima Sawadogo, 2022. "Drought Impacts on the Crop Sector and Adaptation Options in Burkina Faso: A Gender-Focused Computable General Equilibrium Analysis," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    11. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.
    12. Sigit Perdana & Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, , vol. 41(3), pages 183-206, May.
    13. Tol, Richard S.J., 2006. "Why Worry About Climate Change? A Research Agenda," Climate Change Modelling and Policy Working Papers 12047, Fondazione Eni Enrico Mattei (FEEM).
    14. De Souza Ferreira Filho, Joaquim Bento, 1999. "Trade Creation X Trade Diversion: Evidences from the GTAP Model in the Mercosur Integration Process," Conference papers 330889, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Veronika Huber & Dolores Ibarreta & Katja Frieler, 2017. "Cold- and heat-related mortality: a cautionary note on current damage functions with net benefits from climate change," Climatic Change, Springer, vol. 142(3), pages 407-418, June.
    16. Anil Markandya, 2017. "State of Knowledge on Climate Change, Water, and Economics," World Bank Publications - Reports 26491, The World Bank Group.
    17. Dannenberg, Astrid & Mennel, Tim & Osberghaus, Daniel & Sturm, Bodo, 2009. "The economics of adaptation to climate change: the case of Germany," ZEW Discussion Papers 09-057, ZEW - Leibniz Centre for European Economic Research.
    18. Shahzad Alvi & Faisal Jamil & Roberto Roson & Martina Sartori, 2020. "Do Farmers Adapt to Climate Change? A Macro Perspective," Agriculture, MDPI, vol. 10(6), pages 1-12, June.
    19. Ochuodho, T.O. & Lantz, V.A. & Lloyd-Smith, P. & Benitez, P., 2012. "Regional economic impacts of climate change and adaptation in Canadian forests: A CGE modeling analysis," Forest Policy and Economics, Elsevier, vol. 25(C), pages 100-112.
    20. Kyriaki Remoundou & Phoebe Koundouri, 2009. "Environmental Effects on Public Health: An Economic Perspective," IJERPH, MDPI, vol. 6(8), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0071574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.