IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v259y2013icp24-29.html
   My bibliography  Save this article

Approximating the dispersal of multi-species ecological entities such as communities, ecosystems or habitat types

Author

Listed:
  • Laitila, Jussi
  • Moilanen, Atte

Abstract

Dispersal and connectivity are fundamental concepts in spatial ecology and conservation biology. The ability of species to move into new environments and adapt to global change depends crucially on their dispersal abilities. The dispersal ability of a species is often modelled by dispersal kernel, a probability density function which specifies how the dispersing individuals distribute around the origin. However, often the ecological entity of interest is a habitat type, ecosystem or a community. Common to these entities is that they are surrogates for many species which have different dispersal abilities. Therefore choosing a single dispersal kernel or spatial scale to represent the dispersal of such an entity is not correct and typically poorly represents the reality for species that have either short or long dispersal distances. Spatial modelling of the dispersal of multiple species is a computationally complex problem and techniques are needed for approximating the multi-species information in some practically tractable manner. In this work a novel mathematical method is developed for quantizing (optimally approximating or clustering) a density of dispersal kernels to obtain a small number of kernels which optimally represent a collection of species. The proposed method produces information that can be directly utilized in spatial conservation decision making tools that use dispersal kernels to model connectivity. Thus, while mathematical in nature, the present work has direct application in conservation.

Suggested Citation

  • Laitila, Jussi & Moilanen, Atte, 2013. "Approximating the dispersal of multi-species ecological entities such as communities, ecosystems or habitat types," Ecological Modelling, Elsevier, vol. 259(C), pages 24-29.
  • Handle: RePEc:eee:ecomod:v:259:y:2013:i:c:p:24-29
    DOI: 10.1016/j.ecolmodel.2013.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013001531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ., 1998. "Given Quantities," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 61, Edward Elgar Publishing.
    2. Rayfield, Bronwyn & Moilanen, Atte & Fortin, Marie-Josée, 2009. "Incorporating consumer–resource spatial interactions in reserve design," Ecological Modelling, Elsevier, vol. 220(5), pages 725-733.
    3. ., 1998. "Quantities and Prices," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    4. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    5. ., 1998. "Quantity Theory of Money," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    6. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Zusman & Dani Broitman & Boris A. Portnov, 2016. "Application of the double kernel density approach to the multivariate analysis of attributeless event point datasets," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 363-382, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dereich, Steffen, 2008. "The coding complexity of diffusion processes under supremum norm distortion," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 917-937, June.
    2. Miranda, Manuel J. & Bocchini, Paolo, 2015. "A versatile technique for the optimal approximation of random processes by Functional Quantization," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 935-958.
    3. Auriel M. V. Fournier & R. Randy Wilson & Jeffrey S. Gleason & Evan M. Adams & Janell M. Brush & Robert J. Cooper & Stephen J. DeMaso & Melanie J. L. Driscoll & Peter C. Frederick & Patrick G. R. Jodi, 2023. "Structured Decision Making to Prioritize Regional Bird Monitoring Needs," Interfaces, INFORMS, vol. 53(3), pages 207-217, May.
    4. Wang, Haoluan, 2017. "Land Conservation for Open Space: The Impact of Neighbors and the Natural Environment," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258125, Agricultural and Applied Economics Association.
    5. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    6. Roy, Arijit & Bhattacharya, Sudeepto & Ramprakash, M. & Senthil Kumar, A., 2016. "Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach," Ecological Modelling, Elsevier, vol. 329(C), pages 77-85.
    7. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    8. Cho, Seong-Hoon & Kim, Taeyoung & Larson, Eric R. & Armsworth, Paul R., 2017. "Economies of scale in forestland acquisition costs for nature conservation," Forest Policy and Economics, Elsevier, vol. 75(C), pages 73-82.
    9. Iritié, Bi Goli Jean Jacques, 2015. "Economic growth and biodiversity: An overview. Conservation policies in Africa," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 8(2), pages 196-208.
    10. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    11. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    12. Jessica L. Needham & Karen F. Beazley & Victoria P. Papuga, 2020. "Accessing Local Tacit Knowledge as a Means of Knowledge Co-Production for Effective Wildlife Corridor Planning in the Chignecto Isthmus, Canada," Land, MDPI, vol. 9(9), pages 1-38, September.
    13. Ramel, Cindy & Rey, Pierre-Louis & Fernandes, Rui & Vincent, Claire & Cardoso, Ana R. & Broennimann, Olivier & Pellissier, Loïc & Pradervand, Jean-Nicolas & Ursenbacher, Sylvain & Schmidt, Benedikt R, 2020. "Integrating ecosystem services within spatial biodiversity conservation prioritization in the Alps," Ecosystem Services, Elsevier, vol. 45(C).
    14. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Gao, Shan & Su, Meirong & Zhang, Yan, 2015. "Designing a multi-species spatially explicit nature reserve network construction framework based on extinction probability: A case study of Wuyishan city," Ecological Modelling, Elsevier, vol. 318(C), pages 109-117.
    15. Zhicong Zhao & Pei Wang & Xiaoshan Wang & Fangyi Wang & Tz-Hsuan Tseng & Yue Cao & Shuyu Hou & Jiayuan Peng & Rui Yang, 2022. "A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation," Land, MDPI, vol. 11(10), pages 1-17, September.
    16. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    17. James Fitzsimons & Michael Heiner & Bruce McKenney & Kei Sochi & Joseph Kiesecker, 2014. "Development by Design in Western Australia: Overcoming Offset Obstacles," Land, MDPI, vol. 3(1), pages 1-21, February.
    18. Egoh, Benis & Rouget, Mathieu & Reyers, Belinda & Knight, Andrew T. & Cowling, Richard M. & van Jaarsveld, Albert S. & Welz, Adam, 2007. "Integrating ecosystem services into conservation assessments: A review," Ecological Economics, Elsevier, vol. 63(4), pages 714-721, September.
    19. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    20. Gaglio, M. & Aschonitis, V. & Pieretti, L. & Santos, L. & Gissi, E. & Castaldelli, G. & Fano, E.A., 2019. "Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes," Ecological Modelling, Elsevier, vol. 403(C), pages 23-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:259:y:2013:i:c:p:24-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.