IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v251y2013icp64-72.html
   My bibliography  Save this article

What mark variograms tell about spatial plant interactions

Author

Listed:
  • Pommerening, Arne
  • Särkkä, Aila

Abstract

Many if not all data collected in ecology have both a spatial as well as a temporal dimension. This suggests the use of summary characteristics from spatial statistics to gain more refined insight into plant interactions. Spatial tree data can for example be considered as point patterns (formed by tree locations) with attached marks (e.g. tree sizes). If only the pattern of tree locations is of interest one can use for example the pair correlation function. If in addition, the sizes (or some other characteristics) of trees or other plants are of interest, marked summary statistics can be more suitable. In this paper, we propose the so-called mark variogram as a useful tool in ecological studies. This summary characteristic basically indicates how similar two plants within a certain distance from each other are. For example, if two plants are approximately of the same size, the mark variogram has small values, and if their sizes differ somewhat, the mark variogram has large values. Recently, there has been a lot of discussion on how to interpret the shape of mark variograms caused by pairs of plants with different sizes at close proximity. Such variogram shapes exhibiting so-called negative autocorrelation, another expression for high small-scaled size diversity, are assumed to indicate strong competition between plants.

Suggested Citation

  • Pommerening, Arne & Särkkä, Aila, 2013. "What mark variograms tell about spatial plant interactions," Ecological Modelling, Elsevier, vol. 251(C), pages 64-72.
  • Handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:64-72
    DOI: 10.1016/j.ecolmodel.2012.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pommerening, Arne & LeMay, Valerie & Stoyan, Dietrich, 2011. "Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study," Ecological Modelling, Elsevier, vol. 222(3), pages 666-678.
    2. Nanos, Nikos & Larson, Kajsa & Millerón, Matias & Sjöstedt-de Luna, Sara, 2010. "Inverse modeling for effective dispersal: Do we need tree size to estimate fecundity?," Ecological Modelling, Elsevier, vol. 221(20), pages 2415-2424.
    3. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Häbel, Henrike & Myllymäki, Mari & Pommerening, Arne, 2019. "New insights on the behaviour of alternative types of individual-based tree models for natural forests," Ecological Modelling, Elsevier, vol. 406(C), pages 23-32.
    2. Gianfranco Fabbio & Paolo Cantiani & Fabrizio Ferretti & Umberto Di Salvatore & Giada Bertini & Claudia Becagli & Ugo Chiavetta & Maurizio Marchi & Luca Salvati, 2018. "Sustainable Land Management, Adaptive Silviculture, and New Forest Challenges: Evidence from a Latitudinal Gradient in Italy," Sustainability, MDPI, vol. 10(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    2. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    3. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    4. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    5. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    6. Pommerening, Arne & Szmyt, Janusz & Zhang, Gongqiao, 2020. "A new nearest-neighbour index for monitoring spatial size diversity: The hyperbolic tangent index," Ecological Modelling, Elsevier, vol. 435(C).
    7. Vijay Rajagopal & Gregory Bass & Cameron G Walker & David J Crossman & Amorita Petzer & Anthony Hickey & Ivo Siekmann & Masahiko Hoshijima & Mark H Ellisman & Edmund J Crampin & Christian Soeller, 2015. "Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-31, September.
    8. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    9. Liao, Jinbao & Li, Zhenqing & Quets, Jan J. & Nijs, Ivan, 2013. "Effects of space partitioning in a plant species diversity model," Ecological Modelling, Elsevier, vol. 251(C), pages 271-278.
    10. Pommerening, Arne & Sterba, Hubert & West, Philip, 2022. "Sampling theory inspires quantitative forest ecology: The story of the relascope kernel function," Ecological Modelling, Elsevier, vol. 467(C).
    11. Abdollah Jalilian, 2017. "Modelling and classification of species abundance: a case study in the Barro Colorado Island plot," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2401-2409, October.
    12. Éric Marcon & Florence Puech, 2023. "Mapping distributions in non-homogeneous space with distance-based methods [Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance]," Post-Print hal-04345149, HAL.
    13. Herguido Sevillano, E. & Lavado Contador, J.F. & Schnabel, S. & Pulido, M. & Ibáñez, J., 2018. "Using spatial models of temporal tree dynamics to evaluate the implementation of EU afforestation policies in rangelands of SW Spain," Land Use Policy, Elsevier, vol. 78(C), pages 166-175.
    14. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    15. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    16. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    17. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    18. Catherine Linard & Marius Gilbert & Robert W Snow & Abdisalan M Noor & Andrew J Tatem, 2012. "Population Distribution, Settlement Patterns and Accessibility across Africa in 2010," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    19. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    20. J. Bednařík & V. Čada & K. Matějka, 2014. "Forest succession after a major anthropogenic disturbance: a case study of the Jewish Forest in the Bohemian Forest, Czech Republic," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 60(8), pages 336-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:251:y:2013:i:c:p:64-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.