IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i9p1626-1638.html
   My bibliography  Save this article

Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment

Author

Listed:
  • Ge, Zhen-Ming
  • Zhou, Xiao
  • Kellomäki, Seppo
  • Peltola, Heli
  • Wang, Kai-Yun

Abstract

The aim of this work was to test a process-based model (hydrological model combined with forest growth model) on the simulation of seasonal variability of evapotranspiration (ET) in an even-aged boreal Scots pine (Pinus sylvestris L.) stand over a 10 year period (1999–2008). The water flux components (including canopy transpiration (Et) and evaporation from canopy (Ec) and ground surface (Eg) were estimated in order to output the long-term stand water budget considering the interaction between climate variations and stand development. For validation, half-hourly data on eddy water vapor fluxes were measured during the 10 growing seasons (May–September). The model predicted well the seasonal course of ET compared to the measured values, but slightly underestimated the water fluxes both in non-drought and drought (2000, 2003 and 2006) years. The prediction accuracy was, on average, higher in drought years. The simulated ET over the 10years explained, on average, 58% of the daily variations and 84% of the monthly amount of ET. Water amount from Et contributed most to the ET, with the fractions of Et, Ec and Eg being, on average, 67, 11 and 23% over the 10-year period, respectively. Regardless of weather conditions, the daily ET was strongly dependent on air temperature (Ta) and vapor pressure deficit (Da), but less dependent on soil moisture (Ws). On cloudy and rainy days, there was a non-linear relationship between the ET and solar radiation (Ro). During drought years, the model predicted lower daily canopy stomatal conductance (gcs) compared with non-drought years, leading to a lower level of Et. The modeled daily gcs responded well to Da and Ws. In the model simulation, the annual LAI increased by 35% between 1999 and 2008. The ratio of Ec: ET correlated strongly with LAI. Furthermore, LAI reduced the proportion of Eg as a result of the increased share of Ec and Et and radiation interception. Although the increase of LAI affected positively Et, the contribution of Et in ET was not significantly correlated with LAI. To conclude, although the model predicted reasonably well the seasonal course of ET, the calculation time steps of different processes in the model should be homogenized in the future to increase the prediction accuracy.

Suggested Citation

  • Ge, Zhen-Ming & Zhou, Xiao & Kellomäki, Seppo & Peltola, Heli & Wang, Kai-Yun, 2011. "Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment," Ecological Modelling, Elsevier, vol. 222(9), pages 1626-1638.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:9:p:1626-1638
    DOI: 10.1016/j.ecolmodel.2011.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011001037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Zhen-ming & Zhou, Xiao & Kellomäki, Seppo & Wang, Kai-yun & Peltola, Heli & Väisänen, Hannu & Strandman, Harri, 2010. "Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland," Ecological Modelling, Elsevier, vol. 221(13), pages 1731-1743.
    2. Olchev, A. & Ibrom, A. & Ross, T. & Falk, U. & Rakkibu, G. & Radler, K. & Grote, S. & Kreilein, H. & Gravenhorst, G., 2008. "A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere," Ecological Modelling, Elsevier, vol. 212(1), pages 122-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Zhen-Ming & Guo, Hai-Qiang & Zhao, Bin & Zhang, Chao & Peltola, Heli & Zhang, Li-Quan, 2016. "Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach," Ecological Modelling, Elsevier, vol. 321(C), pages 110-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaudio, Noémie & Belyazid, Salim & Gendre, Xavier & Mansat, Arnaud & Nicolas, Manuel & Rizzetto, Simon & Sverdrup, Harald & Probst, Anne, 2015. "Combined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: A modeling approach," Ecological Modelling, Elsevier, vol. 306(C), pages 24-34.
    2. Gong, Jinnan & Wang, Kaiyun & Kellomäki, Seppo & Zhang, Chao & Martikainen, Pertti J. & Shurpali, Narasinha, 2012. "Modeling water table changes in boreal peatlands of Finland under changing climate conditions," Ecological Modelling, Elsevier, vol. 244(C), pages 65-78.
    3. Olchev, A. & Radler, K. & Sogachev, A. & Panferov, O. & Gravenhorst, G., 2009. "Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature," Ecological Modelling, Elsevier, vol. 220(21), pages 3046-3056.
    4. Timothy Frye & Andrei Yakovlev, 2015. "Elections and Property Rights: Evidence from a Natural Experiment in Russia," HSE Working papers WP BRP 29/PS/2015, National Research University Higher School of Economics.
    5. Likasiri, Chulin & Duangdai, Eakkapong & Pongvuthithum, Radom, 2014. "Mathematical model on the effects of global climate change and decreasing forest cover on seasonal rainfall in Northern Thailand," Ecological Modelling, Elsevier, vol. 272(C), pages 388-393.
    6. Laine-Kaulio, Hanne & Koivusalo, Harri & Komarov, Alexander S. & Lappalainen, Mari & Launiainen, Samuli & Laurén, Ari, 2014. "Extending the ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing boreal mor," Ecological Modelling, Elsevier, vol. 272(C), pages 277-292.
    7. Brecka, Aaron F.J. & Shahi, Chander & Chen, Han Y.H., 2018. "Climate change impacts on boreal forest timber supply," Forest Policy and Economics, Elsevier, vol. 92(C), pages 11-21.
    8. Zhen-Ming Ge & Seppo Kellomäki & Heli Peltola & Xiao Zhou & Hannu Väisänen & Harri Strandman, 2013. "Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model," Climatic Change, Springer, vol. 118(2), pages 259-273, May.
    9. Zhen-Ming Ge & Seppo Kellomäki & Heli Peltola & Xiao Zhou & Hannu Väisänen, 2013. "Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland," Climatic Change, Springer, vol. 118(2), pages 275-289, May.
    10. Launiainen, Samuli & Katul, Gabriel G. & Lauren, Ari & Kolari, Pasi, 2015. "Coupling boreal forest CO2, H2O and energy flows by a vertically structured forest canopy – Soil model with separate bryophyte layer," Ecological Modelling, Elsevier, vol. 312(C), pages 385-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:9:p:1626-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.