IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i3p588-597.html
   My bibliography  Save this article

Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling

Author

Listed:
  • Merckx, Bea
  • Steyaert, Maaike
  • Vanreusel, Ann
  • Vincx, Magda
  • Vanaverbeke, Jan

Abstract

Nowadays, species are driven to extinction at a high rate. To reduce this rate it is important to delineate suitable habitats for these species in such a way that these areas can be suggested as conservation areas. The use of habitat suitability models (HSMs) can be of great importance for the delineation of such areas. In this study MaxEnt, a presence-only modelling technique, is used to develop HSMs for 223 nematode species of the Southern Bight of the North Sea. However, it is essential that these models are beyond discussion and they should be checked for potential errors. In this study we focused on two categories (1) errors which can be attributed to the database such as preferential sampling and spatial autocorrelation and (2) errors induced by the modelling technique such as overfitting, In order to quantify these adverse effects thousands of nulls models were created. The effect of preferential sampling (i.e. some areas where visited more frequenty than others) was investigated by comparing model outcomes based from null models sampling the actual sampling stations and null models sampling the entire mapping area (Raes and ter Steege, 2007). Overfitting is exposed by a fivefold cross-validation and the influence of spatial autocorrelation is assessed by separating test and training sets in space. Our results clearly show that all these effects are present: preferential sampling has a strong effect on the selection of non-random species models. Crossvalidation seems to have less influence on the model selection and spatial autocorrelation is also strongly present. It is clear from this study that predefined thresholds are not readily applicable to all datasets and additional tests are needed in model selection.

Suggested Citation

  • Merckx, Bea & Steyaert, Maaike & Vanreusel, Ann & Vincx, Magda & Vanaverbeke, Jan, 2011. "Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling," Ecological Modelling, Elsevier, vol. 222(3), pages 588-597.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:588-597
    DOI: 10.1016/j.ecolmodel.2010.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    2. Merckx, Bea & Goethals, Peter & Steyaert, Maaike & Vanreusel, Ann & Vincx, Magda & Vanaverbeke, Jan, 2009. "Predictability of marine nematode biodiversity," Ecological Modelling, Elsevier, vol. 220(11), pages 1449-1458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    2. Mahya Norallahi & Hesam Seyed Kaboli, 2021. "Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 119-137, March.
    3. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    4. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    5. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jong-Kuk & Oh, Hyun-Joo & Koo, Bon Joo & Ryu, Joo-Hyung & Lee, Saro, 2011. "Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS," Ecological Modelling, Elsevier, vol. 222(8), pages 1522-1533.
    2. Crisci, C. & Ghattas, B. & Perera, G., 2012. "A review of supervised machine learning algorithms and their applications to ecological data," Ecological Modelling, Elsevier, vol. 240(C), pages 113-122.
    3. Sohoulande Djebou, Dagbegnon C. & Singh, Vijay P., 2015. "Retrieving vegetation growth patterns from soil moisture, precipitation and temperature using maximum entropy," Ecological Modelling, Elsevier, vol. 309, pages 10-21.
    4. Everaert, Gert & Boets, Pieter & Lock, Koen & Džeroski, Sašo & Goethals, Peter L.M., 2011. "Using classification trees to analyze the impact of exotic species on the ecological assessment of polder lakes in Flanders, Belgium," Ecological Modelling, Elsevier, vol. 222(14), pages 2202-2212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:588-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.