IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i14p2377-2384.html
   My bibliography  Save this article

Emergy analysis of the urban metabolism of Beijing

Author

Listed:
  • Zhang, Yan
  • Yang, Zhifeng
  • Liu, Gengyuan
  • Yu, Xiangyi

Abstract

Cities can be modeled as if they were superorganisms with a range of metabolic processes. Research on this urban metabolism can contribute to solving urban environmental problems by revealing details of the metabolic throughput of the system. A key issue is how to find a common basis for measuring the environmental and economic values. By providing a single unified unit, emergy theory integrates the natural and socioeconomic systems and thoroughly evaluates a system's metabolism. We analyzed Beijing's urban metabolic system using emergy synthesis to evaluate its environmental resources, economy, and environmental and economic relations with the regions outside the city during 14 years of development. We compared Beijing's emergy indices with those of five other Chinese cities and of China as a whole to assess Beijing's relative development status. These indices are the emergy self-support ratio (metabolic dependence), the environmental load ratio (metabolic loading), empower density (metabolic pressure), emergy used per person (metabolic intensity per capita), and the monetary equivalent of emergy (emdollars; metabolic intensity). Based on our emergy analysis, Beijing's socioeconomic system is not self-sufficient, and depends greatly on external environmental resources. Its GDP is supported by a high percentage of emergy purchased from outside the city. During the study period, Beijing's urban system showed an increasing dependence on external resources for its economic development. Beijing's loading and pressure on the ecological environment is continuously increasing, accompanied by continuously increasing human emergy consumption. In the future, it will become increasingly necessary to improve Beijing's metabolic efficiency.

Suggested Citation

  • Zhang, Yan & Yang, Zhifeng & Liu, Gengyuan & Yu, Xiangyi, 2011. "Emergy analysis of the urban metabolism of Beijing," Ecological Modelling, Elsevier, vol. 222(14), pages 2377-2384.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2377-2384
    DOI: 10.1016/j.ecolmodel.2010.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    2. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    3. Douglas, Ian & Hodgson, Rob & Lawson, Nigel, 2002. "Industry, environment and health through 200 years in Manchester," Ecological Economics, Elsevier, vol. 41(2), pages 235-255, May.
    4. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giordano, P. & Caputo, P. & Vancheri, A., 2014. "Fuzzy evaluation of heterogeneous quantities: Measuring urban ecological efficiency," Ecological Modelling, Elsevier, vol. 288(C), pages 112-126.
    2. Meirong Su & Yan Zhang & Gengyuan Liu & Linyu Xu & Lixiao Zhang & Zhifeng Yang, 2013. "Urban Ecosystem Health Assessment: Perspectives and Chinese Practice," IJERPH, MDPI, vol. 10(11), pages 1-12, November.
    3. Su, Meirong & Fath, Brian D. & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2013. "Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management," Energy Policy, Elsevier, vol. 59(C), pages 600-613.
    4. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    5. Xiaoyu Xu, 2021. "Multi-System Urban Waste-Energy Self-Circulation: Design of Urban Self-Circulation System Based on Emergy Analysis," IJERPH, MDPI, vol. 18(14), pages 1-26, July.
    6. Bhagaban Behera, 2013. "Drug Trafficking as a Non-Traditional Security Threat to Central Asian States," Jadavpur Journal of International Relations, , vol. 17(2), pages 229-251, December.
    7. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    8. Giannetti, Biagio F. & Faria, Luciana & Almeida, Cecília M.V.B. & Agostinho, Feni & Coscieme, Luca & Liu, Gengyuan, 2018. "Human-nature nexuses in Brazil: Monitoring production of economic and ecosystem services in historical series," Ecosystem Services, Elsevier, vol. 30(PB), pages 248-256.
    9. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    10. Li, Dezhi & Du, Bingzhen & Zhu, Jin, 2021. "Evaluating old community renewal based on emergy analysis: A case study of Nanjing," Ecological Modelling, Elsevier, vol. 449(C).
    11. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    12. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Mathias Glaus & Norma Angélica Oropeza-García & Robert Hausler, 2015. "Sustainability Assessment of the Residential Land Use in Seven Boroughs of the Island of Montreal, Canada," Sustainability, MDPI, vol. 7(3), pages 1-19, February.
    13. Qing Huang & Xinqi Zheng & Yecui Hu, 2015. "Analysis of Land-Use Emergy Indicators Based on Urban Metabolism: A Case Study for Beijing," Sustainability, MDPI, vol. 7(6), pages 1-19, June.
    14. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Norma Angélica Oropeza-García & Mathias Glaus & Robert Hausler & Herlinda Del Socorro Silva-Poot, 2017. "Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    15. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    16. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    17. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    18. Zhanqi Wang & Ji Chai & Bingqing Li, 2016. "The Impacts of Land Use Change on Residents’ Living Based on Urban Metabolism: A Case Study in Yangzhou City of Jiangsu Province, China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    19. Lulu Qu & Xueyi Shi & Chang Liu & Ye Yuan, 2017. "An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    20. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    21. Chiu, Hao-Wei & Lee, Ying-Chieh & Huang, Shu-Li & Hsieh, Ya-Cheng, 2019. "How does peri-urbanization teleconnect remote areas? An emergy approach," Ecological Modelling, Elsevier, vol. 403(C), pages 57-69.
    22. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    2. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    3. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    4. Zhang, Yan & Liu, Hong & Chen, Bin, 2013. "Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing," Ecological Modelling, Elsevier, vol. 252(C), pages 106-113.
    5. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    6. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    7. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    8. Hui Cheng & Chunmei Mao, 2024. "Disparities in Environmental Behavior from Urban–Rural Perspectives: How Socioeconomic Status Structures Influence Residents’ Environmental Actions—Based on the 2021 China General Social Survey Data," Sustainability, MDPI, vol. 16(18), pages 1-27, September.
    9. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    10. Jennie Moore, 2015. "Ecological Footprints and Lifestyle Archetypes: Exploring Dimensions of Consumption and the Transformation Needed to Achieve Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-17, April.
    11. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    12. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    13. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    14. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    15. Qingsong Wang & Ping Liu & Xueliang Yuan & Xingxing Cheng & Rujian Ma & Ruimin Mu & Jian Zuo, 2015. "Structural Evolution of Household Energy Consumption: A China Study," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
    16. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    17. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    18. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    19. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    20. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2377-2384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.