IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i18p2291-2301.html
   My bibliography  Save this article

Emergy-based urban health evaluation and development pattern analysis

Author

Listed:
  • Liu, G.Y.
  • Yang, Z.F.
  • Chen, B.
  • Ulgiati, S.

Abstract

The objective of this study is to measure and evaluate the ecosystem health levels of 31 Chinese capital cities in 2004 through an emergy synthesis framework. A system of indicators was developed corresponding to the four factors of urban ecosystem health including efficiency, structure, impact and flux. Furthermore, combined with individual indices, an emergy-based urban ecosystem health index (EUEHI) was proposed to measure and evaluate the health levels among various typical cities in China, which offers an integrated evaluation tool in view of urban production, trade and consumption. The results showed that there are intrinsic differences among six clusters associated with driving mechanisms distinguishing the rankings of urban health levels. After lining the cities of similar health levels with cluster map, the spatial distribution of the urban health is found to be arch-shaped, increasing initially and then decreasing from coast to inner land. This kind of spatial hierarchy is per se compatible and consistent with the hierarchical theory of emergy synthesis. The results also revealed double restrictions of urban health between economy and environment. Moreover, the interaction analysis was used for mirroring the driving mechanism of urban ecosystem health. Three conclusions were arrived at. Firstly, environmental health is inversely related to the economic health in China, indicating that cities cannot achieve win–win between environment and economy in the current urban development mode. Secondly, based on economy-driven mode, four quadrants were divided in the city division map, wherein 43.33% of the concerned cities developed in high economy-restriction mode, which means low economic level is still an important limiting factor for the major cities of China. Finally, based on environment-driven mode, two sections were divided, of which weak environmental dominance mode expounds the special characteristics of urban environment with obvious fragility. 23.33% of the 30 cities were in the intermediate state, which means a few correspondingly unhealthy cities should develop concrete polices for the urban ecosystem restoration.

Suggested Citation

  • Liu, G.Y. & Yang, Z.F. & Chen, B. & Ulgiati, S., 2009. "Emergy-based urban health evaluation and development pattern analysis," Ecological Modelling, Elsevier, vol. 220(18), pages 2291-2301.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2291-2301
    DOI: 10.1016/j.ecolmodel.2009.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009003834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, M.M. & Chen, B. & Zhou, J.B. & Tao, F.R. & Li, Z. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy account for biomass resource exploitation by agriculture in China," Energy Policy, Elsevier, vol. 35(9), pages 4704-4719, September.
    2. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    3. Soares, Joao Oliveira & Marques, Maria Manuela Lourenco & Monteiro, Carlos Manuel Ferreira, 2003. "A multivariate methodology to uncover regional disparities: A contribution to improve European Union and governmental decisions," European Journal of Operational Research, Elsevier, vol. 145(1), pages 121-135, February.
    4. Su, M.R. & Yang, Z.F. & Chen, B. & Ulgiati, S., 2009. "Urban ecosystem health assessment based on emergy and set pair analysis—A comparative study of typical Chinese cities," Ecological Modelling, Elsevier, vol. 220(18), pages 2341-2348.
    5. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    6. Huang, Shu-Li & Kao, Wei-Chieh & Lee, Chun-Lin, 2007. "Energetic mechanisms and development of an urban landscape system," Ecological Modelling, Elsevier, vol. 201(3), pages 495-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meirong Su & Yan Zhang & Gengyuan Liu & Linyu Xu & Lixiao Zhang & Zhifeng Yang, 2013. "Urban Ecosystem Health Assessment: Perspectives and Chinese Practice," IJERPH, MDPI, vol. 10(11), pages 1-12, November.
    2. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2014. "Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts," Ecological Modelling, Elsevier, vol. 271(C), pages 90-102.
    3. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Lixiao, 2013. "Modelling a thermodynamic-based comparative framework for urban sustainability: Incorporating economic and ecological losses into emergy analysis," Ecological Modelling, Elsevier, vol. 252(C), pages 280-287.
    4. Xufeng Zhang & Yanliang Liu & Akmaral Tleubergenova & Jin-Song Liu & Ru Fan & Yun-En Tang & Xiang-Zhou Meng, 2022. "Evaluation of Urban Sustainability Based on Development Structures and Economic Aggregates: A Case Study of Jiaxing, China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    5. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    6. Guomin Li & Yaoqiu Kuang & Ningsheng Huang & Xiangyang Chang, 2014. "Emergy Synthesis and Regional Sustainability Assessment: Case Study of Pan-Pearl River Delta in China," Sustainability, MDPI, vol. 6(8), pages 1-28, August.
    7. Su, Meirong & Fath, Brian D. & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2013. "Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management," Energy Policy, Elsevier, vol. 59(C), pages 600-613.
    8. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    9. Xuefeng Xie & Lijie Pu, 2017. "Assessment of Urban Ecosystem Health Based on Matter Element Analysis: A Case Study of 13 Cities in Jiangsu Province, China," IJERPH, MDPI, vol. 14(8), pages 1-17, August.
    10. Chang Liu & Xueyi Shi & Lulu Qu & Bingyi Li, 2016. "Comparative Analysis for the Urban Metabolic Differences of Two Types of Cities in the Resource-Dependent Region Based on Emergy Theory," Sustainability, MDPI, vol. 8(7), pages 1-11, July.
    11. Liu, Gengyuan & Yang, Zhifeng & Fath, Brian D. & Shi, Lei & Ulgiati, Sergio, 2017. "Time and space model of urban pollution migration: Economy-energy-environment nexus network," Applied Energy, Elsevier, vol. 186(P2), pages 96-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    2. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    3. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    4. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    5. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    6. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    7. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    8. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    9. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    10. Su, Meirong & Fath, Brian D. & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2013. "Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management," Energy Policy, Elsevier, vol. 59(C), pages 600-613.
    11. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    12. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    13. Mei Gong & Göran Wall, 2016. "Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society," Energies, MDPI, vol. 9(9), pages 1-16, September.
    14. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    15. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    16. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    17. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    18. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    19. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    20. Chen, G.Q. & Yang, Q. & Zhao, Y.H. & Wang, Z.F., 2011. "Nonrenewable energy cost and greenhouse gas emissions of a 1.5Â MW solar power tower plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1961-1967, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2291-2301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.