IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v216y2008i2p208-216.html
   My bibliography  Save this article

Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution

Author

Listed:
  • Svirejeva-Hopkins, A.
  • Schellnhuber, H.-J.

Abstract

The method is used for calculating regional urban area dynamics and the resulting carbon emissions (from the land-conversion) for the period of 1980 till 2050 for the eight world regions. This approach is based on the fact that the spatial distribution of population density is close to the two-parametric Γ-distribution [Kendall, M.G., Stuart, A., 1958. The Advanced Theory of Statistics, vol. 1.2. Academic Press, New York; Vaughn, R., 1987. Urban Spatial Traffic Patterns, Pion, London]. The developed model provides us with the scenario of urbanisation, based on which the regional and world dynamics of carbon emissions and export from cities, and the annual total urban carbon balance are estimated. According to our estimations, world annual emissions of carbon as a result of urbanisation increase up to 1.25GtC in 2005 and begin to decrease afterwards. If we compare the emission maximum with the annual emission caused by deforestation, 1.36GtC per year, then we can say that the role of urbanised territories (UT) in the global carbon balance is of a comparable magnitude. Regarding the world annual export of carbon from UT, we observe its monotonous growth by three times, reaching 505MtC. The latter, is comparable to the amount of carbon transported by rivers into the ocean (196–537MtC). The current model shows that urbanisation is inhibited in the interval 2020–2030, and by 2050 the growth of urbanised areas would almost stop. Hence, the total balance, being almost constant until 2000, then starts to decrease at an almost constant rate. By the end of the XXI century, the total carbon balance will be equal to zero, with the exchange flows fully balanced, and may even be negative, with the system beginning to take up carbon from the atmosphere, i.e., becomes a “sink”. The regional dynamics is somewhat more complex, i.e., some regions, like China, Asia and Pacific are being active sources of Carbon through the studied period, while others are changing from source to sink or continue to be neutral in respect the GCC.

Suggested Citation

  • Svirejeva-Hopkins, A. & Schellnhuber, H.-J., 2008. "Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution," Ecological Modelling, Elsevier, vol. 216(2), pages 208-216.
  • Handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:208-216
    DOI: 10.1016/j.ecolmodel.2008.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi, 2022. "Digital financial inclusion and carbon neutrality: Evidence from non-linear analysis," Resources Policy, Elsevier, vol. 79(C).
    2. Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019. "Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 16(2), pages 171-205, December.
    3. Raphaël Homayoun Boroumand & Stéphane Goutte & Thomas Péran & Thomas Porcher, 2019. "Worker mobility and the purchase of low CO2 emission vehicles in France: a datamining approach," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 16(2), pages 171-205, December.
    4. Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
    5. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    6. Zhou, Chuanbin & Huang, Heping & Cao, Aixin & Xu, Wanying, 2015. "Modeling the carbon cycle of the municipal solid waste management system for urban metabolism," Ecological Modelling, Elsevier, vol. 318(C), pages 150-156.
    7. Zhenwei Wang & Yi Zeng & Xiaochun Wang & Tianci Gu & Wanxu Chen, 2024. "Impact of Urban Expansion on Carbon Emissions in the Urban Agglomerations of Yellow River Basin, China," Land, MDPI, vol. 13(5), pages 1-20, May.
    8. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    9. Chunli Zhou & Xiqiao Lin & Renhao Wang & Bowei Song, 2023. "Real-Time Carbon Emissions Monitoring of High-Energy-Consumption Enterprises in Guangxi Based on Electricity Big Data," Energies, MDPI, vol. 16(13), pages 1-19, July.
    10. Lyu, Rongfang & Zhang, Jianming & Xu, Mengqun & Li, Jijun, 2018. "Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China," Land Use Policy, Elsevier, vol. 77(C), pages 163-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:216:y:2008:i:2:p:208-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.