IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v371y2018icp18-24.html
   My bibliography  Save this article

Review of spatial analysis of urban carbon metabolism

Author

Listed:
  • Zhang, Yan
  • Wu, Qiong
  • Fath, Brian D.

Abstract

Urban areas have contributed 75% of the global CO2 emissions. Therefore, seeking global carbon reduction solutions from the perspective of city has become a focus of decision-makers in charge of environmental protection. The carbon emission reduction potential in land management and spatial adjustment has become an important mean for achieving regional and global sustainable development. In this paper, we systematically review and synthesize four main aspects of urban carbon metabolism spatial analysis, namely: (1) advances in urban carbon metabolism, (2) carbon accounting based on land use and cover change, (3) spatial distribution of urban carbon metabolism and influencing factors, and (4) forecasting based on land use change (Land Use and Cover Change – LUCC). In addition, we point out current deficiencies in the study of urban carbon metabolism, such as incomplete process analysis and lack of spatial display. Based on previous research, we propose a spatial-analysis-centric outlook on urban carbon metabolism, including the following key approaches: (1) future researchers should simultaneously consider natural and socioeconomic components, as well as vertical (flows from land to atmosphere) and horizontal (flows among different land use types) carbon flows, to obtain a more complete picture of the entire urban carbon metabolism system; (2) carbon metabolic spatial mapping can be implemented in patches to better serve government’s goals for optimal regulation and spatial planning; (3) researchers should refine current urban-scale research, also expanding it to the metropolitan (i.e., urban agglomeration) scale, to establish multi-scale, multi-level, and organic network structures, and study the spatial distribution pattern of carbon metabolism within and among cities and metropolitan areas, which will lay a scientific foundation for urban, regional, and national sustainable development.

Suggested Citation

  • Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
  • Handle: RePEc:eee:ecomod:v:371:y:2018:i:c:p:18-24
    DOI: 10.1016/j.ecolmodel.2018.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017302028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    2. Svirejeva-Hopkins, A. & Schellnhuber, H.-J., 2008. "Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution," Ecological Modelling, Elsevier, vol. 216(2), pages 208-216.
    3. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    4. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    5. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    6. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    7. Lee, Chun-Lin & Huang, Shu-Li & Chan, Shih-Liang, 2009. "Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region," Ecological Modelling, Elsevier, vol. 220(21), pages 2940-2959.
    8. Villalba, Gara & Gemechu, Eskinder Demisse, 2011. "Estimating GHG emissions of marine ports--the case of Barcelona," Energy Policy, Elsevier, vol. 39(3), pages 1363-1368, March.
    9. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    10. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    2. Linlin Xia & Jianfeng Wei & Ruwei Wang & Lei Chen & Yan Zhang & Zhifeng Yang, 2022. "Exploring Potential Ways to Reduce the Carbon Emission Gap in an Urban Metabolic System: A Network Perspective," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    3. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    4. Chuang Tu & Xianzhong Mu & Yufeng Wu & Yifan Gu & Guangwen Hu, 2022. "Heterogenous impacts of components in urban energy metabolism: evidences from gravity model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10089-10117, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    2. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
    3. Zhang, Junjie & Yan, Zengfeng & Bi, Wenbei & Ni, Pingan & Lei, Fuming & Yao, Shanshan & Lang, Jiachen, 2023. "Prediction and scenario simulation of the carbon emissions of public buildings in the operation stage based on an energy audit in Xi'an, China," Energy Policy, Elsevier, vol. 173(C).
    4. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    5. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    6. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    7. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    8. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    9. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    10. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    11. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    12. Kailun Fang & Suzana Ariff Azizan & Yifei Wu, 2023. "Low-Carbon Community Regeneration in China: A Case Study in Dadong," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    13. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    14. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    15. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    16. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    17. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    18. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    19. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    20. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:371:y:2018:i:c:p:18-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.