IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p651-d1391712.html
   My bibliography  Save this article

Impact of Urban Expansion on Carbon Emissions in the Urban Agglomerations of Yellow River Basin, China

Author

Listed:
  • Zhenwei Wang

    (School of Public Administration, Hubei University, Wuhan 430062, China)

  • Yi Zeng

    (Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China)

  • Xiaochun Wang

    (School of Public Administration, Hubei University, Wuhan 430062, China)

  • Tianci Gu

    (Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China)

  • Wanxu Chen

    (Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China)

Abstract

Continued urban expansion (UE) has long been regarded as a huge challenge for climate change mitigation. However, much less is known about how UE affects carbon emissions (CEs), especially in the urban agglomerations of the Yellow River Basin (UAYRB), China. In this regard, this study introduced kernel density analysis, the Gini coefficient, and Markov chains to reveal the UE patterns and carbon emissions intensity (CEI) in the UAYRB at the county level, and explored the spatial heterogeneity of the impact of UE on CEI with the geographically and temporally weighted regression model. The results show that both CEI and UE in the UAYRB showed a steady growing trend during the study period. The kernel density of CEI and UE revealed that CEI in the UAYRB was weakening, while the UE rate continuously slowed down. The Gini coefficients of both CEI and UE in the UAYRB region were at high levels, indicating obvious spatial imbalance. The Markov transfer probability matrix for CEI with a time span of five years showed that CEI growth will still occur over the next five years, while that of UE was more obvious. Meanwhile, counties with a regression coefficient of UE on CEI higher than 0 covered the majority, and the distribution pattern remained quite stable. The regression coefficients of different urban landscape metrics on CEI in the UAYRB varied greatly; except for the landscape shape index, the regression coefficients of the aggregation index, interspersion and juxtaposition index, and patch density overall remained positive. These findings can advance the policy enlightenment of the high-quality development of the Yellow River Basin.

Suggested Citation

  • Zhenwei Wang & Yi Zeng & Xiaochun Wang & Tianci Gu & Wanxu Chen, 2024. "Impact of Urban Expansion on Carbon Emissions in the Urban Agglomerations of Yellow River Basin, China," Land, MDPI, vol. 13(5), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:651-:d:1391712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bettencourt, Luis M.A. & Lobo, Jose & Strumsky, Deborah, 2007. "Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size," Research Policy, Elsevier, vol. 36(1), pages 107-120, February.
    2. Svirejeva-Hopkins, A. & Schellnhuber, H.-J., 2008. "Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution," Ecological Modelling, Elsevier, vol. 216(2), pages 208-216.
    3. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    4. Ling Zhang & Jiawei Zhang & Xiaohui Li & Kaidi Zhou & Jiang Ye, 2023. "The Impact of Urban Sprawl on Carbon Emissions from the Perspective of Nighttime Light Remote Sensing: A Case Study in Eastern China," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    5. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    6. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    7. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    8. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    9. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Gholami, 2024. "A Holistic Multi-Criteria Assessment of Solar Energy Utilization on Urban Surfaces," Energies, MDPI, vol. 17(21), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weisong Li & Jiahui Wu & Liyan Yang & Wanxu Chen & Xinghua Cui & Mingyu Lin, 2024. "Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations," Land, MDPI, vol. 13(8), pages 1-20, August.
    2. Gianfranco DI VAIO & Michele BATTISTI, 2010. "A Spatially-Filtered Mixture of Beta-Convergence Regression for EU Regions, 1980-2002," Regional and Urban Modeling 284100013, EcoMod.
    3. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    4. Kutuk, Yasin, 2022. "Inequality convergence: A world-systems theory approach," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 150-165.
    5. Sebastian Weber, 2009. "European Financial Market Integration: A Closer Look at Government Bonds in Eurozone Countries," Working Paper / FINESS 1.1b, DIW Berlin, German Institute for Economic Research.
    6. Fofack, Hippolyte, 2008. "Technology trap and poverty trap in Sub-Saharan Africa," Policy Research Working Paper Series 4582, The World Bank.
    7. Jonas Kibala Kuma, 2020. "Solow model and convergence's equation : mathematical processing [Dérivation des équations de convergence dans le modèle de Solow : démarche mathématique]," Working Papers hal-02424875, HAL.
    8. Maza, Adolfo & Villaverde, José, 2011. "EU regional convergence and policy: Does the concept of region matter?," Journal of Policy Modeling, Elsevier, vol. 33(6), pages 889-900.
    9. Henryk Gurgul & Łukasz Lach, 2011. "The impact of regional disparities on economic growth," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 21(2), pages 17-43.
    10. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    11. María Hierro & Adolfo Maza, 2015. "From Discrete To Continuous-Time Transition Matrices In Intra-Distribution Dynamics Analysis: An Application To Per Capita Wealth In Europe," Bulletin of Economic Research, Wiley Blackwell, vol. 67(3), pages 227-235, July.
    12. Sun, Lu & Liu, Wenjing & Li, Zhaoling & Cai, Bofeng & Fujii, Minoru & Luo, Xiao & Chen, Wei & Geng, Yong & Fujita, Tsuyoshi & Le, Yiping, 2021. "Spatial and structural characteristics of CO2 emissions in East Asian megacities and its indication for low-carbon city development," Applied Energy, Elsevier, vol. 284(C).
    13. Andrés Rodríguez-Pose & Riccardo Crescenzi, 2008. "Mountains in a flat world: why proximity still matters for the location of economic activity," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 1(3), pages 371-388.
    14. Camilla Mastromarco & Léopold Simar, 2021. "Latent heterogeneity to evaluate the effect of human capital on world technology frontier," Journal of Productivity Analysis, Springer, vol. 55(2), pages 71-89, April.
    15. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    16. Teixidó-Figueras, J. & Duro, J.A., 2014. "Spatial Polarization of the Ecological Footprint Distribution," Ecological Economics, Elsevier, vol. 104(C), pages 93-106.
    17. Lee, Chien-Chiang & Qian, Anqi, 2024. "Regional differences, dynamic evolution, and obstacle factors of cultivated land ecological security in China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    18. Cristina Brasili & Luciano Gutierrez, 2004. "Regional convergence across European Union," Development and Comp Systems 0402002, University Library of Munich, Germany.
    19. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    20. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:651-:d:1391712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.