IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v215y2008i4p325-336.html
   My bibliography  Save this article

Modelling directional spatial processes in ecological data

Author

Listed:
  • Blanchet, F. Guillaume
  • Legendre, Pierre
  • Borcard, Daniel

Abstract

Distributions of species, animals or plants, terrestrial or aquatic, are influenced by numerous factors such as physical and biogeographical gradients. Dominant wind and current directions cause the appearance of gradients in physical conditions whereas biogeographical gradients can be the result of historical events (e.g. glaciations). No spatial modelling technique has been developed to this day that considers the direction of an asymmetric process controlling species distributions along a gradient or network. This paper presents a new method that can model species spatial distributions generated by a hypothesized asymmetric, directional physical process. This method is an eigenfunction-based spatial filtering technique that offers as much flexibility as the Moran's eigenvector maps (MEM) framework; it is called asymmetric eigenvector maps (AEM) modelling. Information needed to construct eigenfunctions through the AEM framework are the spatial coordinates of the sampling or experimental sites, a connexion diagram linking the sites to one another, prior information about the direction of the hypothesized asymmetric process influencing the response variable(s), and optionally, weights attached to the edges (links). To illustrate how this new method works, AEM is compared to MEM analysis through simulations and in the analysis of an ecological example where a known asymmetric forcing is present. The ecological example reanalyses the dietary habits of brook trout (Salvelinus fontinalis) sampled in 42 lakes of the Mastigouche Reserve, Québec.

Suggested Citation

  • Blanchet, F. Guillaume & Legendre, Pierre & Borcard, Daniel, 2008. "Modelling directional spatial processes in ecological data," Ecological Modelling, Elsevier, vol. 215(4), pages 325-336.
  • Handle: RePEc:eee:ecomod:v:215:y:2008:i:4:p:325-336
    DOI: 10.1016/j.ecolmodel.2008.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008001798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    2. Goddard, K.A. & Craig, K.J. & Schoombie, J. & le Roux, P.C., 2022. "Investigation of ecologically relevant wind patterns on Marion Island using Computational Fluid Dynamics and measured data," Ecological Modelling, Elsevier, vol. 464(C).
    3. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Metulini, 2013. "Spatial gravity models for international trade: a panel analysis among OECD countries," ERSA conference papers ersa13p522, European Regional Science Association.
    2. Reinhold Kosfeld & Christian Dreger & Hans-Friedrich Eckey, 2008. "On the stability of the German Beveridge curve: a spatial econometric perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 967-986, December.
    3. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    4. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    5. Hans-Friedrich Eckey & Reinhold Kosfeld & Matthias Türck, 2007. "Regionale Entwicklung mit und ohne räumliche Spillover-Effekte," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 27(1), pages 23-42, February.
    6. D’Aubigny Gérard, 2016. "A Statistical Toolbox For Mining And Modeling Spatial Data," Comparative Economic Research, Sciendo, vol. 19(5), pages 5-24, December.
    7. Alfred Garloff & Carsten Pohl & Norbert Schanne, 2011. "Do smaller labour market entry cohorts really reduce German unemployment?," ERSA conference papers ersa10p658, European Regional Science Association.
    8. Adolfo Maza & Paula Gutiérrez-Portilla, 2022. "Outward FDI and exports relation: A heterogeneous panel approach dealing with cross-sectional dependence," International Economics, CEPII research center, issue 170, pages 174-189.
    9. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    10. Anthony Jjumba & Suzana Dragićević, 2016. "Spatial indices for measuring three-dimensional patterns in a voxel-based space," Journal of Geographical Systems, Springer, vol. 18(3), pages 183-204, July.
    11. Sylvain Barde & Rowan Cherodian & Guy Tchuente, 2024. "Moran's I 2-Stage Lasso: for Models with Spatial Correlation and Endogenous Variables," Papers 2404.02584, arXiv.org.
    12. Gloria Alarcón-García & José Daniel Buendía Azorín & María del Mar Sánchez de la Vega, 2020. "Shadow economy and national culture: A spatial approach," Hacienda Pública Española / Review of Public Economics, IEF, vol. 232(1), pages 53-74, March.
    13. Daniele Fabbri & Silvana Robone, 2010. "The geography of hospital admission in a national health service with patient choice," Health Economics, John Wiley & Sons, Ltd., vol. 19(9), pages 1029-1047, September.
    14. Christoph Grimpe & Roberto Patuelli, 2011. "Regional knowledge production in nanomaterials: a spatial filtering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 519-541, June.
    15. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    16. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    17. Umber, Marc P. & Grote, Michael H. & Frey, Rainer, 2014. "Same as it ever was? Europe's national borders and the market for corporate control," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 109-127.
    18. Manfred M. Fischer & Daniel A. Griffith, 2008. "Modeling Spatial Autocorrelation In Spatial Interaction Data: An Application To Patent Citation Data In The European Union," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 969-989, December.
    19. Matthias Koch, 2012. "Spatial Filtering and Model Interpretation for Spatial Durbin Models," ERSA conference papers ersa12p1021, European Regional Science Association.
    20. Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:215:y:2008:i:4:p:325-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.