IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v214y2008i2p201-209.html
   My bibliography  Save this article

Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns

Author

Listed:
  • Bode, Michael
  • Burrage, Kevin
  • Possingham, Hugh P.

Abstract

Almost all metapopulation modelling assumes that connectivity between patches is only a function of distance, and is therefore symmetric. However, connectivity will not depend only on the distance between the patches, as some paths are easy to traverse, while others are difficult. When colonising organisms interact with the heterogeneous landscape between patches, connectivity patterns will invariably be asymmetric. There have been few attempts to theoretically assess the effects of asymmetric connectivity patterns on the dynamics of metapopulations. In this paper, we use the framework of complex networks to investigate whether metapopulation dynamics can be determined by directly analysing the asymmetric connectivity patterns that link the patches. Our analyses focus on “patch occupancy” metapopulation models, which only consider whether a patch is occupied or not. We propose three easily calculated network metrics: the “asymmetry” and “average path strength” of the connectivity pattern, and the “centrality” of each patch. Together, these metrics can be used to predict the length of time a metapopulation is expected to persist, and the relative contribution of each patch to a metapopulation's viability. Our results clearly demonstrate the negative effect that asymmetry has on metapopulation persistence. Complex network analyses represent a useful new tool for understanding the dynamics of species existing in fragmented landscapes, particularly those existing in large metapopulations.

Suggested Citation

  • Bode, Michael & Burrage, Kevin & Possingham, Hugh P., 2008. "Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns," Ecological Modelling, Elsevier, vol. 214(2), pages 201-209.
  • Handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:201-209
    DOI: 10.1016/j.ecolmodel.2008.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008000744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Limei & Shen, Yang & Liao, Jinbao, 2020. "Robustness of dispersal network structure to patch loss," Ecological Modelling, Elsevier, vol. 424(C).
    2. Shen, Yang & Zeng, Chenghui & Nijs, Ivan & Liao, Jinbao, 2019. "Species persistence in spatially regular networks," Ecological Modelling, Elsevier, vol. 406(C), pages 1-6.
    3. Christopher Baker & Michael Bode, 2013. "Spatial control of invasive species in conservation landscapes," Computational Management Science, Springer, vol. 10(4), pages 331-351, December.
    4. Kininmonth, Stuart & Beger, Maria & Bode, Michael & Peterson, Eric & Adams, Vanessa M. & Dorfman, Dan & Brumbaugh, Daniel R. & Possingham, Hugh P., 2011. "Dispersal connectivity and reserve selection for marine conservation," Ecological Modelling, Elsevier, vol. 222(7), pages 1272-1282.
    5. Phillips, Jonathan D., 2011. "Predicting modes of spatial change from state-and-transition models," Ecological Modelling, Elsevier, vol. 222(3), pages 475-484.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.
    4. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    5. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Eriksson, A. & Elías-Wolff, F. & Mehlig, B., 2013. "Metapopulation dynamics on the brink of extinction," Theoretical Population Biology, Elsevier, vol. 83(C), pages 101-122.
    8. d’Acampora, Bárbara H.A. & Higueras, Ester & Román, Emilia, 2018. "Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil," Ecological Modelling, Elsevier, vol. 384(C), pages 103-110.
    9. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    10. Zhouqiao Ren & Jianhua He & Qiaobing Yue, 2021. "Assessing the Impact of Urban Expansion on Surrounding Forested Landscape Connectivity across Space and Time," Land, MDPI, vol. 10(4), pages 1-14, April.
    11. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    12. Ohlmann, Marc & Munoz, François & Massol, François & Thuiller, Wilfried, 2024. "Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks," Theoretical Population Biology, Elsevier, vol. 156(C), pages 22-39.
    13. Peck, Steven L., 2012. "Networks of habitat patches in tsetse fly control: Implications of metapopulation structure on assessing local extinction probabilities," Ecological Modelling, Elsevier, vol. 246(C), pages 99-102.
    14. Vuilleumier, Séverine & Possingham, Hugh P., 2012. "Interacting populations in heterogeneous environments," Ecological Modelling, Elsevier, vol. 228(C), pages 96-105.
    15. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    16. Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
    17. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    18. Bauer, Dana Marie & Swallow, Stephen K., 2013. "Conserving metapopulations in human-altered landscapes at the urban–rural fringe," Ecological Economics, Elsevier, vol. 95(C), pages 159-170.
    19. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    20. M. Heino & I. Hanski, 2000. "Evolution of Migration Rate in a Spatially Realistic Metapopulation Model," Working Papers ir00044, International Institute for Applied Systems Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:201-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.