IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v207y2007i2p234-242.html
   My bibliography  Save this article

Assessing the validity of autologistic regression

Author

Listed:
  • Dormann, Carsten F.

Abstract

In autologistic regression models employed in the analysis of species’ spatial distributions, an additional explanatory variable, the autocovariate, is used to correct the effect of spatial autocorrelation. The values of the autocovariate depend on the values of the response variable in the neighbourhood. While this approach has been widely used over the last ten years in biogeographical analyses, it has not been assessed for its validity and performance against artificial simulation data with known properties. I here present such an assessment, varying the range and strength of spatial autocorrelation in the data as well as the prevalence of the focal species. Autologistic regression models consistently underestimate the effect of the environmental variable in the model and give biased estimates compared to a non-spatial logistic regression. A comparison with other methods available for the correction of spatial autocorrelation shows that autologistic regression is more biased and less reliable and hence should be used only in concert with other reference methods.

Suggested Citation

  • Dormann, Carsten F., 2007. "Assessing the validity of autologistic regression," Ecological Modelling, Elsevier, vol. 207(2), pages 234-242.
  • Handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:234-242
    DOI: 10.1016/j.ecolmodel.2007.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007002748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arbia, Giuseppe & Benedetti, Roberto & Espa, Giuseppe, 1999. "Contextual classification in image analysis: an assessment of accuracy of ICM," Computational Statistics & Data Analysis, Elsevier, vol. 30(4), pages 443-455, June.
    2. A. N. Pettitt & N. Friel & R. Reeves, 2003. "Efficient calculation of the normalizing constant of the autologistic and related models on the cylinder and lattice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 235-246, February.
    3. Carl, G. & Kühn, I., 2007. "Analyzing spatial autocorrelation in species distributions using Gaussian and logit models," Ecological Modelling, Elsevier, vol. 207(2), pages 159-170.
    4. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Troxler, David & Zabel, Astrid & Grêt-Regamey, Adrienne, 2023. "Identifying drivers of forest clearances in Switzerland," Forest Policy and Economics, Elsevier, vol. 150(C).
    2. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    3. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    4. Xin-Lou Li & Kun Liu & Hong-Wu Yao & Ye Sun & Wan-Jun Chen & Ruo-Xi Sun & Sake J. De Vlas & Li-Qun Fang & Wu-Chun Cao, 2015. "Highly Pathogenic Avian Influenza H5N1 in Mainland China," IJERPH, MDPI, vol. 12(5), pages 1-20, May.
    5. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    6. Ahmed Mustafa & Anton Van Rompaey & Mario Cools & Ismaïl Saadi & Jacques Teller, 2018. "Addressing the determinants of built-up expansion and densification processes at the regional scale," Urban Studies, Urban Studies Journal Limited, vol. 55(15), pages 3279-3298, November.
    7. Jian Kang & Nanhua Zhang & Ran Shi, 2014. "A Bayesian nonparametric model for spatially distributed multivariate binary data with application to a multidrug-resistant tuberculosis (MDR-TB) study," Biometrics, The International Biometric Society, vol. 70(4), pages 981-992, December.
    8. Ashcroft, Michael B. & French, Kristine O. & Chisholm, Laurie A., 2012. "A simple post-hoc method to add spatial context to predictive species distribution models," Ecological Modelling, Elsevier, vol. 228(C), pages 17-26.
    9. Platts, Philip J. & McClean, Colin J. & Lovett, Jon C. & Marchant, Rob, 2008. "Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty," Ecological Modelling, Elsevier, vol. 218(1), pages 121-134.
    10. Mugenyi Albert & Nicola A Wardrop & Peter M Atkinson & Steve J Torr & Susan C Welburn, 2015. "Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(4), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Villaverde & Adolfo Maza, 2012. "Chinese per Capita Income Distribution, 1992–2007: A Regional Perspective," Asian Economic Journal, East Asian Economic Association, vol. 26(4), pages 313-331, December.
    2. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    3. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    4. Aurélien Fichet de Clairfontaine & Christoph Hammer, 2018. "Is the wage equation spatial enough? Evidence from a novel regional trade dataset," Review of International Economics, Wiley Blackwell, vol. 26(3), pages 610-633, August.
    5. Hyoung Jun Kim & Bo Kyeong Lee & So Young Sohn, 2020. "Comparing spatial patterns of sole proprietorship and corporate payday lenders in Seoul, Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(1), pages 215-236, February.
    6. Cordera, Rubén & Sañudo, Roberto & dell’Olio, Luigi & Ibeas, Ángel, 2018. "Trip distribution model for regional railway services considering spatial effects between stations," Transport Policy, Elsevier, vol. 67(C), pages 77-84.
    7. Christoph Grimpe & Roberto Patuelli, 2011. "Regional knowledge production in nanomaterials: a spatial filtering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 519-541, June.
    8. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    9. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    10. Manfred M. Fischer & Daniel A. Griffith, 2008. "Modeling Spatial Autocorrelation In Spatial Interaction Data: An Application To Patent Citation Data In The European Union," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 969-989, December.
    11. Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
    12. Ranjitkar, Sailesh & Xu, Jianchu & Shrestha, Krishna Kumar & Kindt, Roeland, 2014. "Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species," Ecological Modelling, Elsevier, vol. 282(C), pages 18-24.
    13. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    14. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2016. "Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 472-487, April.
    15. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    16. Csereklyei, Zsuzsanna & Stern, David I., 2015. "Global energy use: Decoupling or convergence?," Energy Economics, Elsevier, vol. 51(C), pages 633-641.
    17. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    18. repec:gig:joupla:v:3:y:2011:i:2:p:107-140 is not listed on IDEAS
    19. Paolo Postiglione & M. Andreano & Roberto Benedetti, 2013. "Using Constrained Optimization for the Identification of Convergence Clubs," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 151-174, August.
    20. Sahar Zarmehri & Ephraim M. Hanks & Lin Lin, 2021. "A Sample Covariance-Based Approach For Spatial Binary Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 220-249, June.
    21. Cécile Hardouin & Xavier Guyon, 2014. "Recursions on the marginals and exact computation of the normalizing constant for Gibbs processes," Computational Statistics, Springer, vol. 29(6), pages 1637-1650, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:207:y:2007:i:2:p:234-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.