IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v97y2007i1p17-23.html
   My bibliography  Save this article

Structural change and estimated persistence in the GARCH(1,1)-model

Author

Listed:
  • Kramer, Walter
  • Azamo, Baudouin Tameze

Abstract

It has long been known that the estimated persistence parameter in the GARCH(1,1) - model is biased upwards when the parameters of the model are not constant throughout the sample. The present paper explains the mechanics of this behavior for a particular class of estimates of the model parameters and for a particular type of structural change. It shows for any given sample size that the estimated persistence must tend to one in probability if the structural change is ignored and large enough.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kramer, Walter & Azamo, Baudouin Tameze, 2007. "Structural change and estimated persistence in the GARCH(1,1)-model," Economics Letters, Elsevier, vol. 97(1), pages 17-23, October.
  • Handle: RePEc:eee:ecolet:v:97:y:2007:i:1:p:17-23
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(07)00046-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
    2. Cao, C Q & Tsay, R S, 1992. "Nonlinear Time-Series Analysis of Stock Volatilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 165-185, Suppl. De.
    3. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    4. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    5. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
    6. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    7. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    8. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    9. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    2. Fang, WenShwo & Miller, Stephen M., 2009. "Modeling the volatility of real GDP growth: The case of Japan revisited," Japan and the World Economy, Elsevier, vol. 21(3), pages 312-324, August.
    3. Giorgio Canarella & WenShwo Fang & Stephen M. Miller & Stephen K. Pollard, 2008. "Is the Great Moderation Ending? UK and US Evidence," Working Papers 0801, University of Nevada, Las Vegas , Department of Economics.
    4. WenShwo Fang & Stephen M. Miller & ChunShen Lee, 2008. "Cross‐Country Evidence On Output Growth Volatility: Nonstationary Variance And Garch Models," Scottish Journal of Political Economy, Scottish Economic Society, vol. 55(4), pages 509-541, September.
    5. WenShwo Fang & Stephen M. Miller & ChunShen Lee, 2008. "The Great Moderation Flattens Fat Tails: Disappearing Leptokurtosis," Working papers 2008-48, University of Connecticut, Department of Economics.
    6. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    7. Dejan ŽIVKOV & Jovan NJEGIĆ & Ivan MILENKOVIĆ, 2018. "Interrelationship between DAX Index and Four Largest Eastern European Stock Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 88-103, September.
    8. Krämer, Walter & Tameze, Baudouin & Christou, Konstantinos, 2012. "On the origin of high persistence in GARCH-models," Economics Letters, Elsevier, vol. 114(1), pages 72-75.
    9. Krämer, Walter & Messow, Philip, 2012. "Structural Change and Spurious Persistence in Stochastic Volatility," Ruhr Economic Papers 310, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Anthony Msafiri Nyangarika & Alexey Yurievich Mikhaylov & Bao-jun Tang, 2018. "Correlation of Oil Prices and Gross Domestic Product in Oil Producing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 42-48.
    11. Alexey Yurievich Mikhaylov, 2018. "Volatility Spillover Effect between Stock and Exchange Rate in Oil Exporting Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 321-326.
    12. Krämer, Walter, 2008. "Long memory with Markov-Switching GARCH," Economics Letters, Elsevier, vol. 99(2), pages 390-392, May.
    13. Ahmad Zubaidi Baharumshah & Nor Aishah Hamzah & Shamsul Rijal Muhammad Sabri, 2011. "Inflation uncertainty and economic growth: evidence from the LAD ARCH model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 195-206.
    14. Dejan Živkov & Marina Gajic-Glamoclija & Jasmina Duraskovic & Mirela Momcilovic, 2022. "Assessing Permanent and Transitory Volatility Spillover Effect from Oil to Stocks in Baltic and Visegrad Countries," Journal of Economics / Ekonomicky casopis, Institute of Economic Research, Slovak Academy of Sciences, vol. 70(6), pages 523-542, June.
    15. Han, Heejoon & Park, Joon Y., 2014. "GARCH with omitted persistent covariate," Economics Letters, Elsevier, vol. 124(2), pages 248-254.
    16. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    17. Aslanidis, Nektarios & Dungey, Mardi & Savva, Christos S., 2008. "Progress Towards to Equity Market Integration in Eastern Europe," Working Papers 2072/13265, Universitat Rovira i Virgili, Department of Economics.
    18. Messow, Philip & Krämer, Walter, 2013. "Spurious persistence in stochastic volatility," Economics Letters, Elsevier, vol. 121(2), pages 221-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
    2. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    3. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    5. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    6. Azamo, Baudouin Tameze & Krämer, Walter, 2006. "Structural Change and long memory in the GARCH(1,1)-model," Technical Reports 2006,33, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    8. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    9. Monica Billio & Maddalena Cavicchioli, 2013. "�Markov Switching Models for Volatility: Filtering, Approximation and Duality�," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    10. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    11. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    12. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    13. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    14. Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2006. "Regime switching GARCH models," Discussion Papers (ECON - Département des Sciences Economiques) 2006006, Université catholique de Louvain, Département des Sciences Economiques.
    15. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    17. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    18. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    19. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    20. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:97:y:2007:i:1:p:17-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.