IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v79y2003i2p169-175.html
   My bibliography  Save this article

On the residual autocorrelation of the autoregressive conditional duration model

Author

Listed:
  • Li, W. K.
  • Yu, Philip L. H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Li, W. K. & Yu, Philip L. H., 2003. "On the residual autocorrelation of the autoregressive conditional duration model," Economics Letters, Elsevier, vol. 79(2), pages 169-175, May.
  • Handle: RePEc:eee:ecolet:v:79:y:2003:i:2:p:169-175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(02)00303-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    2. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ng, F.C. & Li, W.K. & Yu, Philip L.H., 2016. "Diagnostic checking of the vector multiplicative error model," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 86-97.
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    4. repec:wyi:journl:002120 is not listed on IDEAS
    5. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," CAEPR Working Papers 2007-019, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    6. Ke, Rui & Lu, Wanbo & Jia, Jing, 2021. "Evaluating multiplicative error models: A residual-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    7. Duchesne, Pierre, 2004. "On the asymptotic distribution of the residual autocovariance matrices in the autoregressive conditional multinomial model," Economics Letters, Elsevier, vol. 83(2), pages 193-197, May.
    8. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    2. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    3. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    5. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    6. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    7. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    8. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43, March.
    9. Goykhman, Mikhail, 2017. "Wealth dynamics in a sentiment-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 132-148.
    10. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    11. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    12. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    14. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    15. Kulan Ranasinghe & Mervyn J. Silvapulle, 2008. "Semiparametric estimation of duration models when the parameters are subject to inequality constraints and the error distribution is unknown," Monash Econometrics and Business Statistics Working Papers 1/08, Monash University, Department of Econometrics and Business Statistics.
    16. Charlie X. Cai & Qi Zhang, 2016. "High†Frequency Exchange Rate Forecasting," European Financial Management, European Financial Management Association, vol. 22(1), pages 120-141, January.
    17. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Kulan Ranasinghe & Mervyn J. Silvapulle, 2008. "Semiparametric estimation of duration models when the parameters are subject to inequality constraints and the error distribution is unknown," Monash Econometrics and Business Statistics Working Papers 5/08, Monash University, Department of Econometrics and Business Statistics.
    19. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    20. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    22. William H.Greene & Max Gillman & Mark N. Harris & Christopher Spencer, 2013. "The Tempered Ordered Probit (TOP) model with an application to monetary policy," Discussion Paper Series 2013_10, Department of Economics, Loughborough University, revised Sep 2013.
    23. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:79:y:2003:i:2:p:169-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.