IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v74y2002i3p353-358.html
   My bibliography  Save this article

Measuring the intensity of knowledge flow with patent statistics

Author

Listed:
  • Fung, Michael K.
  • Chow, William W.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fung, Michael K. & Chow, William W., 2002. "Measuring the intensity of knowledge flow with patent statistics," Economics Letters, Elsevier, vol. 74(3), pages 353-358, February.
  • Handle: RePEc:eee:ecolet:v:74:y:2002:i:3:p:353-358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(01)00558-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaffe, Adam B, 1988. "Demand and Supply Influences in R&D Intensity and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 431-437, August.
    2. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jürgen Antony & Thomas Grebel, 2012. "Technology flows between sectors and their impact on large-scale firms," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2637-2651, July.
    2. Dongwoo Kang & Sandy Dall’erba, 2016. "Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach," Journal of Geographical Systems, Springer, vol. 18(2), pages 125-157, April.
    3. Kang, Byeongwoo, 2015. "The innovation process of Huawei and ZTE: Patent data analysis," China Economic Review, Elsevier, vol. 36(C), pages 378-393.
    4. Fabio Montobbio & E. Bacchiocchi, 2004. "EPO vs. USPTO Citation Lags," KITeS Working Papers 161, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Sep 2004.
    5. Kim, Hanho & Kim, Jae-Kyung, 2005. "Estimation Of The Knowledge Spillover Effects Between Firms In Bio-Related Industries," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137933, Australian Agricultural and Resource Economics Society.
    6. Asid, Rozilee & khalifah, noor, 2016. "The Effects of Foreign R&D and Triadic Patent Propensity on Developing Economies Efficiency and Convergence," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 50(2), pages 107-124.
    7. Blazsek, Szabolcs & Escribano, Alvaro, 2010. "Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors," Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
    8. Powell, Walter W. & Giannella, Eric, 2010. "Collective Invention and Inventor Networks," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 575-605, Elsevier.
    9. Mohamed Ali Labidi, 2023. "The Spatial Distribution of Economic Activities and the Structure of Local Economy: a Spatial Panel Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(4), pages 4079-4099, December.
    10. Dongwoo Kang & Sandy Dall’erba, 2016. "An Examination of the Role of Local and Distant Knowledge Spillovers on the US Regional Knowledge Creation," International Regional Science Review, , vol. 39(4), pages 355-385, October.
    11. Acosta, Manuel & Coronado, Daniel, 2003. "Science-technology flows in Spanish regions: An analysis of scientific citations in patents," Research Policy, Elsevier, vol. 32(10), pages 1783-1803, December.
    12. Iraj Daizadeh, 2007. "Issued US patents, patent-related global academic and media publications, and the US market indices are inter-correlated, with varying growth patterns," Scientometrics, Springer;Akadémiai Kiadó, vol. 73(1), pages 29-36, October.
    13. Jungkyu Park & Eunnyeong Heo & Dongjun Lee, 2017. "Effective R&D investment planning based on technology spillovers: the case of Korea," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 67-82, April.
    14. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    15. Mirja Meyborg & Axel Schaffer, 2014. "Regional and global collaborations for knowledge in German academia," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(2), pages 157-176, October.
    16. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.
    17. repec:hal:journl:peer-00732533 is not listed on IDEAS
    18. Mauro Caminati & Arsenio Stabile, 2010. "The Pattern Of Knowledge Flows Between Technology Fields," Metroeconomica, Wiley Blackwell, vol. 61(2), pages 364-397, May.
    19. Jennifer H. Chen & Shihmin Lo & Show-Ling Jang & Chi-Cho Huang, 2012. "Strategic partnership and its effect on external learning of technology descendants," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 157-179, July.
    20. Hugo Ernesto Martínez Ardila & Julián Eduardo Mora Moreno & Jaime Alberto Camacho Pico, 2020. "Networks of collaborative alliances: the second order interfirm technological distance and innovation performance," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1255-1282, August.
    21. Hou, Jianhua & Tang, Shiqi & Zhang, Yang & Song, Haoyang, 2023. "Does prior knowledge affect patent technology diffusion? A semantic-based patent citation contribution analysis," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Alvaro, 2010. "Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors," Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
    2. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    3. Carter Bloch, 2013. "R&D spillovers and productivity: an analysis of geographical and technological dimensions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(5), pages 447-460, July.
    4. Leonardo Costa Ribeiro & Jorge Nogueira de Paiva Britto & Eduardo da Motta e Albuquerque, 2022. "The emergence of a Global Innovation System: an inter-temporal analysis through a network of networks," Textos para Discussão Cedeplar-UFMG 645, Cedeplar, Universidade Federal de Minas Gerais.
    5. Henri A. Schildt & Markku V.J. Maula & Thomas Keil, 2005. "Explorative and Exploitative Learning from External Corporate Ventures," Entrepreneurship Theory and Practice, , vol. 29(4), pages 493-515, July.
    6. Zhang, Feng & Jiang, Guohua & Cantwell, John A., 2015. "Subsidiary exploration and the innovative performance of large multinational corporations," International Business Review, Elsevier, vol. 24(2), pages 224-234.
    7. Pauly, Stefan & Stipanicic, Fernando, 2021. "The creation and diffusion of knowledge: Evidence from the Jet Age," CEPREMAP Working Papers (Docweb) 2112, CEPREMAP.
    8. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    9. Dietmar Harhoff & Elisabeth Mueller & John Van Reenen, 2014. "What are the Channels for Technology Sourcing? Panel Data Evidence from German Companies," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 23(1), pages 204-224, March.
    10. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    11. Kim, Dong Ha & Lee, Bo Kyeong & Sohn, So Young, 2016. "Quantifying technology–industry spillover effects based on patent citation network analysis of unmanned aerial vehicle (UAV)," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 140-157.
    12. Penin, Julien, 2005. "Patents versus ex post rewards: A new look," Research Policy, Elsevier, vol. 34(5), pages 641-656, June.
    13. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    14. Diemer, Andreas & Regan, Tanner, 2022. "No inventor is an island: Social connectedness and the geography of knowledge flows in the US," Research Policy, Elsevier, vol. 51(2).
    15. Strandholm John C. & Espínola-Arredondo Ana, 2020. "Investment in Green Technology and Entry Deterrence," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 20(2), pages 1-18, April.
    16. Cristian Barra & Nazzareno Ruggiero, 2022. "On the impact of knowledge and institutional spillovers on RIS efficiency. Evidence from Italian regional level," Growth and Change, Wiley Blackwell, vol. 53(2), pages 702-752, June.
    17. Hanna Hottenrott & Bronwyn H. Hall & Dirk Czarnitzki, 2016. "Patents as quality signals? The implications for financing constraints on R&D," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 25(3), pages 197-217, April.
    18. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    19. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    20. Show-Ling Jang & Yun-Chen Yu & Tzu-Ya Wang, 2011. "Emerging firms in an emerging field: an analysis of patent citations in electronic-paper display technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 259-272, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:74:y:2002:i:3:p:353-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.