IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v244y2024ics0165176524004452.html
   My bibliography  Save this article

Efficient covariate balancing for the average treatment effect with missing outcome

Author

Listed:
  • Tang, Shengfang
  • Zhan, Mingfeng
  • Jiang, Qingshan
  • Zhang, Tong

Abstract

This paper develops an empirical balancing approach for the estimation of treatment effects under the framework of outcomes being suffered from missing. We first represent the parameter of interest as a weighted expectation of the observed outcome by introducing two auxiliary binary variables and then estimate the weighting functions using covariate balancing methods. By tailoring the loss function for the weighting functions, the resulting treatment effect estimates are automatically weight-normalized and exhibit both low bias and reduced variance in finite samples when compared to conventional inverse probability weighting methods. Under some regularity conditions, we show that the proposed estimator is consistent, asymptotically normally distributed with the asymptotic variance achieving the semiparametric efficiency bound. Finite-sample performance of the proposed method is evaluated via Monte Carlo simulations.

Suggested Citation

  • Tang, Shengfang & Zhan, Mingfeng & Jiang, Qingshan & Zhang, Tong, 2024. "Efficient covariate balancing for the average treatment effect with missing outcome," Economics Letters, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:ecolet:v:244:y:2024:i:c:s0165176524004452
    DOI: 10.1016/j.econlet.2024.111961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176524004452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2024.111961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    2. Stephen G. Donald & Yu-Chin Hsu & Robert P. Lieli, 2014. "Testing the Unconfoundedness Assumption via Inverse Probability Weighted Estimators of (L)ATT," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 395-415, July.
    3. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    4. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    5. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    6. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    7. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    8. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    9. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    10. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    3. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    4. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    5. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2021. "A Nonparametric Test for Testing Heterogeneity in Conditional Quantile Treatment Effects," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202117, University of Kansas, Department of Economics, revised Aug 2021.
    6. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Inferences for Partially Conditional Quantile Treatment Effect Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202005, University of Kansas, Department of Economics, revised Feb 2020.
    7. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    8. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    9. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
    10. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Jan 2025.
    11. Liu, Yukun & Qin, Jing, 2024. "Tuning-parameter-free propensity score matching approach for causal inference under shape restriction," Journal of Econometrics, Elsevier, vol. 244(1).
    12. Francesca Caselli & Mr. Philippe Wingender, 2018. "Bunching at 3 Percent: The Maastricht Fiscal Criterion and Government Deficits," IMF Working Papers 2018/182, International Monetary Fund.
    13. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    14. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    15. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2020. "A New Quantile Treatment Effect Model for Studying Smoking Effect on Birth Weight During Mother's Pregnancy," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202003, University of Kansas, Department of Economics, revised Feb 2020.
    16. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    17. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
    18. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2021. "Estimating Partially Conditional Quantile Treatment Effects," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202103, University of Kansas, Department of Economics, revised Jan 2021.
    19. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    20. Guido Imbens & Yiqing Xu, 2024. "LaLonde (1986) after Nearly Four Decades: Lessons Learned," Papers 2406.00827, arXiv.org, revised Jun 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:244:y:2024:i:c:s0165176524004452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.