IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v186y2020ics0165176519304264.html
   My bibliography  Save this article

The impact of building energy codes on household electricity expenditures

Author

Listed:
  • Holian, Matthew J.

Abstract

Home energy use is a major source of a typical US household’s carbon emissions. This study uses the American Community Survey (ACS) micro data to estimate the impact of building energy codes on household electricity expenditures, using multiple regression and difference-in-difference models. In California and US samples, I present new evidence that energy codes were modestly effective. Homes built in the decade after energy codes were first adopted spend between 1.5% and 4% less on electricity compared to homes built prior to their adoption.

Suggested Citation

  • Holian, Matthew J., 2020. "The impact of building energy codes on household electricity expenditures," Economics Letters, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519304264
    DOI: 10.1016/j.econlet.2019.108841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519304264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.108841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dora L. Costa & Matthew E. Kahn, 2011. "Electricity Consumption and Durable Housing: Understanding Cohort Effects," American Economic Review, American Economic Association, vol. 101(3), pages 88-92, May.
    2. Koirala, Bishwa S. & Bohara, Alok K. & Berrens, Robert P., 2014. "Estimating the net implicit price of energy efficient building codes on U.S. households," Energy Policy, Elsevier, vol. 73(C), pages 667-675.
    3. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    4. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    5. Anin Aroonruengsawat, Maximilian Auffhammer, and Alan H. Sanstad, 2012. "The Impact of State Level Building Codes on Residential Electricity Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Makram El-Shagi & Claus Michelsen & Sebastian Rosenschon, 2017. "Empirics on the Long-Run Effects of Building Energy Codes in the Housing Market," Land Economics, University of Wisconsin Press, vol. 93(4), pages 585-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jing & Huang, Fubin & Wang, Zihan & Shuai, Chuanmin, 2021. "What is the anti-poverty effect of solar PV poverty alleviation projects? Evidence from rural China," Energy, Elsevier, vol. 218(C).
    2. Matthew J. Holian, 2023. "Methods in open policy analysis: An application to California's building energy codes," Contemporary Economic Policy, Western Economic Association International, vol. 41(4), pages 613-628, October.
    3. Krystyna Gomółka & Piotr Kasprzak, 2022. "Household Ability of Expenditures on Electricity and Energy Resources in the Countries That Joined the EU after 2004," Energies, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    2. Davis, Lucas & Martinez, Sebastian & Taboada, Bibiana, 2018. "How Effective is Energy-efficient Housing?: Evidence From a Field Experiment in Mexico," IDB Publications (Working Papers) 8767, Inter-American Development Bank.
    3. Carattini, Stefano & Figge, Béla & Gordan, Alexander & Löschel, Andreas, 2024. "Municipal building codes and the adoption of solar photovoltaics," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    4. Grant D. Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, , vol. 37(2), pages 93-108, April.
    5. Lang, Ghislaine & Lanz, Bruno, 2022. "Climate policy without a price signal: Evidence on the implicit carbon price of energy efficiency in buildings," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    6. Matthew J. Holian, 2023. "Methods in open policy analysis: An application to California's building energy codes," Contemporary Economic Policy, Western Economic Association International, vol. 41(4), pages 613-628, October.
    7. Davis, Lucas W. & Martinez, Sebastian & Taboada, Bibiana, 2020. "How effective is energy-efficient housing? Evidence from a field trial in Mexico," Journal of Development Economics, Elsevier, vol. 143(C).
    8. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    9. Aydin, Erdal, 2024. "Heterogeneous impacts of building codes on residential energy demand," Energy Economics, Elsevier, vol. 131(C).
    10. Agarwal, Sumit & Satyanarain, Rengarajan & Sing, Tien Foo & Vollmer, Derek, 2016. "Effects of construction activities on residential electricity consumption: Evidence from Singapore's public housing estates," Energy Economics, Elsevier, vol. 55(C), pages 101-111.
    11. Clayton, Jim & Devine, Avis & Holtermans, Rogier, 2021. "Beyond building certification: The impact of environmental interventions on commercial real estate operations," Energy Economics, Elsevier, vol. 93(C).
    12. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    13. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    14. Cattaneo, Cristina, 2018. "Internal and External Barriers to Energy Efficiency: Made-to-Measure Policy Interventions," CSI: Climate and Sustainable Innovation 269536, Fondazione Eni Enrico Mattei (FEEM).
    15. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    16. Toshi H. Arimura, Shanjun Li, Richard G. Newell, and Karen Palmer, 2012. "Cost-Effectiveness of Electricity Energy Efficiency Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    17. Li, Huan & Carrión-Flores, Carmen E., 2017. "An analysis of the ENERGY STAR® program in Alachua County, Florida," Ecological Economics, Elsevier, vol. 131(C), pages 98-108.
    18. Anna Alberini, Will Gans, and Charles Towe, 2016. "Free Riding, Upsizing, and Energy Efficiency Incentives in Maryland Homes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Grant D. Jacobsen, 2019. "An Examination of How Energy Efficiency Incentives Are Distributed Across Income Groups," The Energy Journal, , vol. 40(6), pages 171-198, November.
    20. Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    More about this item

    Keywords

    Urban; Environment; Energy; Housing; Regulation;
    All these keywords.

    JEL classification:

    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519304264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.