IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej39-4-burnett.html
   My bibliography  Save this article

A Top-Down Economic Efficiency Analysis of U.S. Household Energy Consumption

Author

Listed:
  • J. Wesley Burnett and Jessica Madariaga

Abstract

This study analyzes the efficiency of household-level energy consumption using a rich microdata set of homes within the United States. We measure efficiency by extending a cost-minimization model that treats the total amount of energy services produced as latent or unobserved due to technological differences in household consumption. The empirical strategy consists of applying latent class modeling to cost frontier analysis, which helps to identify heterogeneous subsets of units that require the fewest energy resources. Our estimates of efficient units form an empirical cost frontier of best practices within each subset. In order to understand the determinants of household-level energy efficiency, we condition the cost frontier analysis on numerous physical, climate-related, and socio-economic characteristics of the household. We find that state-level energy building code regulations, on average, induce a one-to-four percent marginal increase in household energy consumption.

Suggested Citation

  • J. Wesley Burnett and Jessica Madariaga, 2018. "A Top-Down Economic Efficiency Analysis of U.S. Household Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  • Handle: RePEc:aen:journl:ej39-4-burnett
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3100
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    2. Gilbert E. Metcalf & Kevin A. Hassett, 1999. "Measuring The Energy Savings From Home Improvement Investments: Evidence From Monthly Billing Data," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 516-528, August.
    3. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    4. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    5. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    6. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    7. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    8. Kim, Hyung Chul & Keoleian, Gregory A. & Horie, Yuhta A., 2006. "Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost," Energy Policy, Elsevier, vol. 34(15), pages 2310-2323, October.
    9. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    10. Hunt Allcott, 2013. "The Welfare Effects of Misperceived Product Costs: Data and Calibrations from the Automobile Market," American Economic Journal: Economic Policy, American Economic Association, vol. 5(3), pages 30-66, August.
    11. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harker Steele, Amanda J. & Bergstrom, John C., 2018. "Does Energy Efficiency Effect Energy Security? An Analysis of Energy Efficient Upgrades and Household Energy Security," 2018 Annual Meeting, August 5-7, Washington, D.C. 274186, Agricultural and Applied Economics Association.
    2. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    2. Llorca, Manuel & Rodriguez-Alvarez, Ana & Jamasb, Tooraj, 2020. "Objective vs. subjective fuel poverty and self-assessed health," Energy Economics, Elsevier, vol. 87(C).
    3. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    4. Antonio Alvarez & Carlos Arias, 2014. "A selection of relevant issues in applied stochastic frontier analysis," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 3-11.
    5. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Davis, Lucas & Martinez, Sebastian & Taboada, Bibiana, 2018. "How Effective is Energy-efficient Housing?: Evidence From a Field Experiment in Mexico," IDB Publications (Working Papers) 8767, Inter-American Development Bank.
    7. Maya Papineau, 2017. "Energy Efficiency Premiums in Unlabeled Office Buildings," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Lang, Ghislaine & Lanz, Bruno, 2022. "Climate policy without a price signal: Evidence on the implicit carbon price of energy efficiency in buildings," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    9. Jens Ewald & Thomas Sterner & Eoin Ó Broin & Érika Mata, 2021. "Saving energy in residential buildings: the role of energy pricing," Climatic Change, Springer, vol. 167(1), pages 1-20, July.
    10. Lucas W. Davis & Gilbert E. Metcalf, 2016. "Does Better Information Lead to Better Choices? Evidence from Energy-Efficiency Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 589-625.
    11. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    12. Davis, Lucas W. & Martinez, Sebastian & Taboada, Bibiana, 2020. "How effective is energy-efficient housing? Evidence from a field trial in Mexico," Journal of Development Economics, Elsevier, vol. 143(C).
    13. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    14. Sauer, J. & Morrison-Paul, C., 2011. "Technologies and Localized Technical Change," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    15. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    16. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    17. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    18. Fajardy, M. & Reiner, D M., 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Cambridge Working Papers in Economics 20120, Faculty of Economics, University of Cambridge.
    19. Katrina Jessoe, Maya Papineau, and David Rapson, 2020. "Utilities Included: Split Incentives in Commercial Electricity Contracts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 271-303.
    20. Mohamed Chaffai & Patrick Plane, 2017. "Firm Productivity, Technology and Export Status, What Can We Learn from Egyptian Industries?," Working Papers 1134, Economic Research Forum, revised 09 Jun 2017.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej39-4-burnett. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.