IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v159y2017icp28-32.html
   My bibliography  Save this article

Robust heteroskedasticity-robust tests

Author

Listed:
  • Richard, Patrick

Abstract

Hausman and Palmer (2012) suggest using the Edgeworth corrected critical values of Rothenberg (1988) along with a pairs bootstrap covariance matrix estimator in order to obtain second order correct heteroskedasticity-robust inferences. According to their simulations, this test has size comparable to and power greater than a wild bootstrap test. In this note, I show that this does not hold in general. Using a more extensive set of simulations reveals that the wild bootstrap test is much more robust to the underlying data generating process.

Suggested Citation

  • Richard, Patrick, 2017. "Robust heteroskedasticity-robust tests," Economics Letters, Elsevier, vol. 159(C), pages 28-32.
  • Handle: RePEc:eee:ecolet:v:159:y:2017:i:c:p:28-32
    DOI: 10.1016/j.econlet.2017.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517302884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    2. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
    3. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    4. Kline, Patrick & Santos, Andres, 2012. "Higher order properties of the wild bootstrap under misspecification," Journal of Econometrics, Elsevier, vol. 171(1), pages 54-70.
    5. Hausman, Jerry & Palmer, Christopher, 2012. "Heteroskedasticity-robust inference in finite samples," Economics Letters, Elsevier, vol. 116(2), pages 232-235.
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    2. Yamile Díaz Torres & Paride Gullo & Hernán Hernández Herrera & Migdalia Torres del Toro & Mario A. Álvarez Guerra & Jorge Iván Silva Ortega & Arne Speerforck, 2022. "Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    3. Richard, Patrick, 2019. "Residual bootstrap tests in linear models with many regressors," Journal of Econometrics, Elsevier, vol. 208(2), pages 367-394.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    2. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    3. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    4. Jianghao Chu & Tae-Hwy Lee & Aman Ullah & Haifeng Xu, 2020. "Exact Distribution of the F-statistic under Heteroskedasticity of Unknown Form for Improved Inference," Working Papers 202027, University of California at Riverside, Department of Economics.
    5. Cyrus J. DiCiccio & Joseph P. Romano & Michael Wolf, 2016. "Improving weighted least squares inference," ECON - Working Papers 232, Department of Economics - University of Zurich, revised Nov 2017.
    6. Sin, C.Y. (Chor-yiu) & Lee, Cheng-Few, 2021. "Using heteroscedasticity-non-consistent or heteroscedasticity-consistent variances in linear regression," Econometrics and Statistics, Elsevier, vol. 18(C), pages 117-142.
    7. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    8. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    9. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    10. Hausman, Jerry & Palmer, Christopher, 2012. "Heteroskedasticity-robust inference in finite samples," Economics Letters, Elsevier, vol. 116(2), pages 232-235.
    11. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    12. DiCiccio, Cyrus J. & Romano, Joseph P. & Wolf, Michael, 2019. "Improving weighted least squares inference," Econometrics and Statistics, Elsevier, vol. 10(C), pages 96-119.
    13. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    14. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    15. Kenneth W. Clements & H. Y. Izan & Yihui Lan, 2009. "A Stochastic Measure of International Competitiveness," International Review of Finance, International Review of Finance Ltd., vol. 9(1‐2), pages 51-81, March.
    16. Lin, Eric S. & Chou, Ta-Sheng, 2012. "A note on Bayesian interpretations of HCCME-type refinements for nonlinear GMM models," Economics Letters, Elsevier, vol. 116(3), pages 494-497.
    17. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    18. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    19. Francisco Cribari-Neto & Wilton Silva, 2011. "A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 129-146, June.
    20. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.

    More about this item

    Keywords

    Heteroskedasticity; Robust inference; Wild bootstrap;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:159:y:2017:i:c:p:28-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.