IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v120y2013i3p532-536.html
   My bibliography  Save this article

Inconsistency of 2SLS estimators in threshold regression with endogeneity

Author

Listed:
  • Yu, Ping

Abstract

This paper shows the inconsistency of three forms of 2SLS estimators to illustrate the specialty of the endogeneity problem in threshold regression.

Suggested Citation

  • Yu, Ping, 2013. "Inconsistency of 2SLS estimators in threshold regression with endogeneity," Economics Letters, Elsevier, vol. 120(3), pages 532-536.
  • Handle: RePEc:eee:ecolet:v:120:y:2013:i:3:p:532-536
    DOI: 10.1016/j.econlet.2013.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513003054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2013.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kourtellos, Andros & Stengos, Thanasis & Tan, Chih Ming, 2016. "Structural Threshold Regression," Econometric Theory, Cambridge University Press, vol. 32(4), pages 827-860, August.
    2. Otilia Boldea & Alastair Hall & Sanggohn Han, 2012. "Asymptotic Distribution Theory for Break Point Estimators in Models Estimated via 2SLS," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 1-33.
    3. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2012. "Inference regarding multiple structural changes in linear models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 281-302.
    4. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(5), pages 813-843, October.
    5. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    6. Perron, Pierre & Yamamoto, Yohei, 2014. "A Note On Estimating And Testing For Multiple Structural Changes In Models With Endogenous Regressors Via 2sls," Econometric Theory, Cambridge University Press, vol. 30(2), pages 491-507, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ping, 2015. "Consistency of the least squares estimator in threshold regression with endogeneity," Economics Letters, Elsevier, vol. 131(C), pages 41-46.
    2. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    3. N. R. Ramírez-Rondán, 2020. "Maximum likelihood estimation of dynamic panel threshold models," Econometric Reviews, Taylor & Francis Journals, vol. 39(3), pages 260-276, March.
    4. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    5. repec:cep:stiecm:/2014/577 is not listed on IDEAS
    6. Djedje Hermann Yohou & Michaël Goujon & Bertrand Laporte & Samuel Guérineau, 2016. "Is Aid Unfriendly to Tax? African Evidence of Heterogeneous Direct and Indirect Effects," Working Papers halshs-01321620, HAL.
    7. Harb, Nermeen & Hall, Stephen G., 2019. "Does foreign aid play a role in the maintenance of economic growth? A non-linear analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 192-204.
    8. Liu, Manzhi & Chen, Meng & He, Gang, 2017. "The origin and prospect of billion-ton coal production capacity in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 70-85.
    9. Yu, Ping, 2015. "Adaptive estimation of the threshold point in threshold regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 83-100.
    10. Hermann D. Yohou, 2023. "Corruption, tax reform and fiscal space in emerging and developing economies," The World Economy, Wiley Blackwell, vol. 46(4), pages 1082-1118, April.
    11. Djedje Hermann Yohou, 2020. "Corruption, Tax reform and Fiscal space in Emerging and Developing Economies," Working Papers hal-02987268, HAL.
    12. Hideaki Matsuoka, 2022. "Debt Intolerance: Threshold Level and Composition," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 894-932, August.
    13. Abdelaziz Hakimi & Rim Boussaada & Majdi Karmani, 2022. "Is the relationship between corruption, government stability and non‐performing loans non‐linear? A threshold analysis for the MENA region," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4383-4398, October.
    14. Rim Boussaada & Abdelaziz Hakimi & Majdi Karmani, 2022. "Is there a threshold effect in the liquidity risk–non‐performing loans relationship? A PSTR approach for MENA banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1886-1898, April.
    15. Fernando Ubeda & Marta Ortiz-de-Urbina-Criado & Eva-María Mora-Valentín, 2019. "Do firms located in science and technology parks enhance innovation performance? The effect of absorptive capacity," The Journal of Technology Transfer, Springer, vol. 44(1), pages 21-48, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    2. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    3. Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 40ca581a-e228-49ae-911f-e, Tilburg University, School of Economics and Management.
    4. Andros Kourtellos & Thanasis Stengos & Chih ming Tan, 2010. "Do institutions rule? The role of heterogeneity in the institutions vs. geography debate," Economics Bulletin, AccessEcon, vol. 30(3), pages 1710-1719.
    5. Eckert, C. & J. Hohberger (Jan) & Franses, Ph.H.B.F., 2022. "Gaussian Copula Regression in the Presence of Thresholds," Econometric Institute Research Papers 2022-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Alogoskoufis, George & Malliaris, A.G. & Stengos, Thanasis, 2023. "The scope and methodology of economic and financial asymmetries," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    7. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2019. "Structural changes in heterogeneous panels with endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 883-892, September.
    8. Otilia Boldea & Alastair R. Hall, 2013. "Testing structural stability in macroeconometric models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 9, pages 206-228, Edward Elgar Publishing.
    9. Qian, Junhui & Su, Liangjun, 2014. "Structural change estimation in time series regressions with endogenous variables," Economics Letters, Elsevier, vol. 125(3), pages 415-421.
    10. Chaoyi Chen & Yiguo Sun, 2018. "Monte Carlo Comparison for Nonparametric Threshold Estimators," JRFM, MDPI, vol. 11(3), pages 1-15, August.
    11. Slesman, Ly & Baharumshah, Ahmad Zubaidi & Azman-Saini, W.N.W., 2019. "Political institutions and finance-growth nexus in emerging markets and developing countries: A tale of one threshold," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 80-100.
    12. Chung‐Hua Shen & Hsing‐Hua Hsu, 2022. "The determinants of Asian banking crises—Application of the panel threshold logit model," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 248-277, March.
    13. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    14. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    15. De Lipsis Vincenzo, 2021. "Dating Structural Changes in UK Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 21(2), pages 509-539, June.
    16. Walid Abdmoulah & Riadh Ben Jelili, 2013. "Access to Finance Thresholds and the Finance-Growth Nexus," Economic Papers, The Economic Society of Australia, vol. 32(4), pages 522-534, December.
    17. Kourtellos, Andros & Stengos, Thanasis & Sun, Yiguo, 2022. "Endogeneity In Semiparametric Threshold Regression," Econometric Theory, Cambridge University Press, vol. 38(3), pages 562-595, June.
    18. Juliana D. Araujo & Povilas Lastauskas & Chris Papageorgiou, 2017. "Evolution of Bilateral Capital Flows to Developing Countries at Intensive and Extensive Margins," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(7), pages 1517-1554, October.
    19. repec:cep:stiecm:/2014/577 is not listed on IDEAS
    20. Bertille Antoine & Otilia Boldea, 2015. "Efficient Inference with Time-Varying Information and the New Keynesian Phillips Curve," Discussion Papers dp15-04, Department of Economics, Simon Fraser University, revised 25 Aug 2016.
    21. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.

    More about this item

    Keywords

    Threshold regression; Endogeneity; Inconsistency; 2SLS estimator; Identification;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:120:y:2013:i:3:p:532-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.