IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v112y2011i1p53-55.html
   My bibliography  Save this article

An asymptotic variance inequality for instrumental variable estimators signaling proportional bias increases

Author

Listed:
  • Kim, Yun-Yeong

Abstract

An asymptotic variance inequality for instrumental variable (IV) estimators is proposed, which suggests a critical variance that signals proportional increases in the bias of IV estimators through the augmentation of a set of instruments.

Suggested Citation

  • Kim, Yun-Yeong, 2011. "An asymptotic variance inequality for instrumental variable estimators signaling proportional bias increases," Economics Letters, Elsevier, vol. 112(1), pages 53-55, July.
  • Handle: RePEc:eee:ecolet:v:112:y:2011:i:1:p:53-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511000942
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    2. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-180, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    2. Christopher L. Skeels & Frank Windmeijer, 2018. "On the Stock–Yogo Tables," Econometrics, MDPI, vol. 6(4), pages 1-23, November.
    3. Fernanda Peixe & Alastair Hall & Kostas Kyriakoulis, 2006. "The Mean Squared Error of the Instrumental Variables Estimator When the Disturbance Has an Elliptical Distribution," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 117-138.
    4. Peter Phillips, 2010. "Two New Zealand pioneer econometricians," New Zealand Economic Papers, Taylor & Francis Journals, vol. 44(1), pages 1-26.
    5. Jan F. Kiviet & Jerzy Niemczyk, 2014. "On the Limiting and Empirical Distributions of IV Estimators When Some of the Instruments are Actually Endogenous," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 425-490, Emerald Group Publishing Limited.
    6. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    7. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    8. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    9. Lazarus, Sheryl S. & McCullough, Gerard J., 2005. "The Impact of Outsourcing on Efficiency in Rural and Nonrural School Districts: The Case of Pupil Transportation in Minnesota," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 35(1), pages 1-14.
    10. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    11. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    12. Phillips, Peter C.B. & Gao, Wayne Yuan, 2017. "Structural inference from reduced forms with many instruments," Journal of Econometrics, Elsevier, vol. 199(2), pages 96-116.
    13. Ekaterini Panopoulou & Nicolaos Kourogenis & Nikitas Pittis, 2006. "Irrelevant but highly persistent instruments in stationary regressions with endogenous variables containing near-to-unit roots," Economics Department Working Paper Series n1620106.pdf, Department of Economics, National University of Ireland - Maynooth.
    14. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    15. Danielsson, Jon & Love, Ryan, 2004. "Feedback trading," LSE Research Online Documents on Economics 24760, London School of Economics and Political Science, LSE Library.
    16. Kenneth A. Bollen & James B. Kirby & Patrick J. Curran & Pamela M. Paxton & Feinian Chen, 2007. "Latent Variable Models Under Misspecification: Two-Stage Least Squares (2SLS) and Maximum Likelihood (ML) Estimators," Sociological Methods & Research, , vol. 36(1), pages 48-86, August.
    17. Gérard P. Cachon & Santiago Gallino & Marcelo Olivares, 2019. "Does Adding Inventory Increase Sales? Evidence of a Scarcity Effect in U.S. Automobile Dealerships," Management Science, INFORMS, vol. 65(4), pages 1469-1485, April.
    18. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    19. Leon Wegge, "undated". "Noncentral Student distributed LS and IV Estimators," Department of Economics 00-07, California Davis - Department of Economics.
    20. You, Wen & Davis, George C. & Nayga, Rodolfo M., Jr. & McIntosh, Alex, 2005. "Parental Time and Children's Obesity Measures," 2005 Annual meeting, July 24-27, Providence, RI 19386, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:112:y:2011:i:1:p:53-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.