IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v68y2023ics1062940823000724.html
   My bibliography  Save this article

Optimal reinsurance-investment game for two insurers with SAHARA utilities under correlated markets

Author

Listed:
  • Chen, Dengsheng
  • Lu, Zhengyang
  • He, Yong

Abstract

In this paper, we study the optimal reinsurance-investment game between two insurers with the same insurance business but different wealth and risk preferences. Assume that the insurers who have the symmetric asymptotic hyperbolic absolute risk aversion (SAHARA) utilities and the price of risky asset obeys the constant elasticity of variance (CEV) model. It is impossible to obtain closed-form solution of the optimal reinsurance-investment strategy due to the non-homothetic property and the complicity of SAHARA utilities. According to establish a strong duality relationship of the value function, we successfully propose an efficient dual control Monte Carlo method for computing the Nash equilibrium strategies. Finally, numerical analysis is given to illustrate the impact of model parameters to Nash equilibrium strategies.

Suggested Citation

  • Chen, Dengsheng & Lu, Zhengyang & He, Yong, 2023. "Optimal reinsurance-investment game for two insurers with SAHARA utilities under correlated markets," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000724
    DOI: 10.1016/j.najef.2023.101949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823000724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    2. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    3. Ma, Jingtang & Li, Wenyuan & Zheng, Harry, 2020. "Dual control Monte-Carlo method for tight bounds of value function under Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 280(2), pages 428-440.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Xingchun & Wang, Yushuang, 2024. "A non-zero-sum investment and reinsurance game between two mean–variance insurers with dynamic CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    2. Yang Liu & Zhenyu Shen, 2024. "PSAHARA Utility Family: Modeling Non-monotone Risk Aversion and Convex Compensation in Incomplete Markets," Papers 2406.00435, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    2. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    3. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    4. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal investment and proportional reinsurance in a regime-switching market model under forward preferences," Papers 2106.13888, arXiv.org.
    5. Huy Chau & Duy Nguyen & Thai Nguyen, 2024. "Continuous-time optimal investment with portfolio constraints: a reinforcement learning approach," Papers 2412.10692, arXiv.org.
    6. Ashley Davey & Harry Zheng, 2020. "Deep Learning for Constrained Utility Maximisation," Papers 2008.11757, arXiv.org, revised Aug 2021.
    7. Emma Kroell & Sebastian Jaimungal & Silvana M. Pesenti, 2023. "Optimal Robust Reinsurance with Multiple Insurers," Papers 2308.11828, arXiv.org, revised Oct 2024.
    8. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    9. Benjamin Avanzi & Hayden Lau & Mogens Steffensen, 2022. "Optimal reinsurance design under solvency constraints," Papers 2203.16108, arXiv.org, revised Jun 2023.
    10. Lijun Bo & Yijie Huang & Xiang Yu, 2023. "An extended Merton problem with relaxed benchmark tracking," Papers 2304.10802, arXiv.org, revised Jul 2024.
    11. Ashley Davey & Harry Zheng, 2022. "Deep Learning for Constrained Utility Maximisation," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 661-692, June.
    12. Ewald, Christian Oliver & Nolan, Charles, 2024. "On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    13. Kraft, Holger & Weiss, Farina, 2023. "Pandemic portfolio choice," European Journal of Operational Research, Elsevier, vol. 305(1), pages 451-462.
    14. Zongxia Liang & Xiaodong Luo, 2024. "Stackelberg reinsurance and premium decisions with MV criterion and irreversibility," Papers 2402.11580, arXiv.org.
    15. Yakun Liu & Jingchao Li & Jieming Zhou & Yingchun Deng, 2024. "Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-34, September.
    16. Barucci, Emilio & Biffis, Enrico & Marazzina, Daniele, 2023. "Health insurance, portfolio choice, and retirement incentives," European Journal of Operational Research, Elsevier, vol. 307(2), pages 910-921.
    17. Jaap Spreeuw, 2022. "The Copula Derived from the SAHARA Utility Function," Risks, MDPI, vol. 10(7), pages 1-10, June.
    18. Ning Bin & Huainian Zhu & Chengke Zhang, 2023. "Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    19. Guohui Guan & Zongxia Liang & Yi Xia, 2024. "Robust mean-variance stochastic differential reinsurance and investment games under volatility risk and model uncertainty," Papers 2412.09171, arXiv.org.
    20. Jingtang Ma & Zhengyang Lu & Zhenyu Cui, 2022. "Delta family approach for the stochastic control problems of utility maximization," Papers 2202.12745, arXiv.org.

    More about this item

    Keywords

    Reinsurance-investment game; SAHARA utility; Nash equilibrium; Correlated markets; Dual methods; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.