IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v25y2013icp139-150.html
   My bibliography  Save this article

Pricing exotic options using the Wang transform

Author

Listed:
  • Labuschagne, Coenraad C.A.
  • Offwood, Theresa M.

Abstract

The Wang transform allows for a simple, yet intuitive approach to pricing options with underlying based on geometric Brownian motion. This paper shows how the approach by Hamada and Sherris can be used to price some exotic options. Examples showing the convergence of the Wang price to the Black–Scholes price for a Margrabe option, a geometric basket option and an asset-or-nothing option are given. We also take a look at the range of prices achievable using the Wang transform for these options.

Suggested Citation

  • Labuschagne, Coenraad C.A. & Offwood, Theresa M., 2013. "Pricing exotic options using the Wang transform," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 139-150.
  • Handle: RePEc:eee:ecofin:v:25:y:2013:i:c:p:139-150
    DOI: 10.1016/j.najef.2012.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940812000599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2012.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Kijima, Masaaki, 2006. "A Multivariate Extension of Equilibrium Pricing Transforms: The Multivariate Esscher and Wang Transforms for Pricing Financial and Insurance Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 269-283, May.
    3. A. Chateauneuf & R. Kast & A. Lapied, 1996. "Choquet Pricing For Financial Markets With Frictions1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 323-330, July.
    4. Wang, Shaun S., 2002. "A Universal Framework for Pricing Financial and Insurance Risks," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 213-234, November.
    5. Labuschagne, Coenraad C.A. & Offwood, Theresa M., 2010. "A note on the connection between the Esscher-Girsanov transform and the Wang transform," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 385-390, December.
    6. Mahmoud Hamada & Michael Sherris, 2003. "Contingent claim pricing using probability distortion operators: methods from insurance risk pricing and their relationship to financial theory," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 19-47.
    7. Pelsser, Antoon, 2008. "On the Applicability of the Wang Transform for Pricing Financial Risks," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 171-181, May.
    8. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hammoudeh, Shawkat & McAleer, Michael, 2013. "Risk management and financial derivatives: An overview," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 109-115.
    2. Choe, Geon Ho & Koo, Ki Hwan, 2014. "Probability of multiple crossings and pricing of double barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 156-184.
    3. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.
    2. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    3. Alexis Bienvenüe & Didier Rullière, 2012. "Iterative Adjustment of Survival Functions by Composed Probability Distortions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(2), pages 156-179, September.
    4. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, September.
    5. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    6. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    7. Corradini, M. & Gheno, A., 2009. "Incomplete financial markets and contingent claim pricing in a dual expected utility theory framework," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 180-187, October.
    8. Raj Kumari Bahl & Sotirios Sabanis, 2016. "Model-Independent Price Bounds for Catastrophic Mortality Bonds," Papers 1607.07108, arXiv.org, revised Dec 2020.
    9. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    10. Massimiliano Corradini & Andrea Gheno, 2007. "Contingent Claim Pricing In A Dual Expected Utility Theory Framework," Departmental Working Papers of Economics - University 'Roma Tre' 0082, Department of Economics - University Roma Tre.
    11. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    12. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    13. De Waegenaere, A.M.B. & Wakker, P.P., 1997. "Choquet Integrals With Respect to Non-Monotonic Set Functions," Discussion Paper 1997-44, Tilburg University, Center for Economic Research.
    14. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.
    15. Kast, Robert & Lapied, Andre, 2003. "Comonotonic book making and attitudes to uncertainty," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 1-7, August.
    16. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    17. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    18. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    19. Young, Virginia R. & Zariphopoulou, Thaleia, 2000. "Computation of distorted probabilities for diffusion processes via stochastic control methods," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 1-18, August.
    20. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.

    More about this item

    Keywords

    Wang transform; Exotic options; Geometric Brownian motion; Choquet pricing;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:25:y:2013:i:c:p:139-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.